4.若四面體的三視圖如圖所示,求該四面體的外接球的表面積41π.

分析 根據(jù)三視圖知幾何體是三棱錐為方體一部分,畫出直觀圖,由長方體的性質(zhì)求出該四面體外接球的半徑,由球的表面積公式求出答案.

解答 解:根據(jù)三視圖知幾何體是:
三棱錐A-BCD為長方體一部分,直觀圖如圖所示:
且長方體的長、寬、高是4、3、4,
∴該四面體外接球與正方體的相同,
設(shè)該四面體外接球的半徑是R,
由長方體的性質(zhì)可得,2R=$\sqrt{16+9+16}$=$\sqrt{41}$,則R=$\frac{\sqrt{41}}{2}$,
∴該四面體外接球的表面積S=4πR2=41π,
故答案為:41π.

點評 本題考查由三視圖求幾何體外接球的表面積,在三視圖與直觀圖轉(zhuǎn)化過程中,以一個長方體為載體是很好的方式,使得作圖更直觀,考查空間想象能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={1,2,3,4},B={x|x<3},則A∩B=( 。
A.{1,2,3,4}B.{1,2}C.{3,4}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.根據(jù)我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.求得144,28的最大公約數(shù)為( 。
A.4B.2C.0D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.四棱錐P-ABCD中,底面ABCD為菱形,$∠DAB=\frac{π}{3}$,PD⊥底面ABCD,AB=PD=a,P、B、C、D,四點能否在一個球面上(不要證明);
(1)求異面直線PA與CD成角的余弦值;
(2)求三棱錐ABCP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x+2y-4≤0}\\{x-y-1≤0}\end{array}\right.$,則x+y的最大值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面流程圖表示的算法是( 。
A.輸出c,b,aB.輸出最大值C.輸出最小值D.比較a,b,c大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.空氣污染,又稱為大氣污染,是指由于人類活動或自然過程引起某些物質(zhì)進入大氣中,呈現(xiàn)出足夠的濃度,達到足夠的時間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來越關(guān)注環(huán)境保護問題.當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時,空氣質(zhì)量級別為一級,空氣質(zhì)量狀況屬于優(yōu);當(dāng)空氣污染指數(shù)為50~100時,空氣質(zhì)量級別為二級,空氣質(zhì)量狀況屬于良;當(dāng)空氣污染指數(shù)為100~150時,空氣質(zhì)量級別為三級,空氣質(zhì)量狀況屬于輕度污染;當(dāng)空氣污染指數(shù)為150~200時,空氣質(zhì)量級別為四級,空氣質(zhì)量狀況屬于中度污染;當(dāng)空氣污染指數(shù)為200~300時,空氣質(zhì)量級別為五級,空氣質(zhì)量狀況屬于重度污染;當(dāng)空氣污染指數(shù)為300以上時,空氣質(zhì)量級別為六級,空氣質(zhì)量狀況屬于嚴重污染.2015年8月某日某省x個監(jiān)測點數(shù)據(jù)統(tǒng)計如下:
空氣污染指數(shù)
(單位:μg/m3
(0,50](50,100](100,150](150,200]
監(jiān)測點個數(shù)1540y10
(Ⅰ)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;
(Ⅱ)在空氣污染指數(shù)分別為50~100和150~200的監(jiān)測點中,用分層抽樣的方法抽取5個監(jiān)測點,從中任意選取2個監(jiān)測點,事件A“兩個都為良”發(fā)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=m(x-2m)(x+m-3),g(x)=2x-2,若任意x∈R,都有f(x)>0或g(x)>0,則m的取值范圍是($\frac{1}{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在甲、乙兩個盒子中分別裝有標(biāo)號為1,2,3,4的四個球,現(xiàn)從甲乙兩個盒子中各取出1個球,球的標(biāo)號分別記做a,b,每個球被取出的可能想相等.
(1)求a+b能被3整除的概率;
(2)若|a-b|≤1則中獎,求中獎的概率.

查看答案和解析>>

同步練習(xí)冊答案