分析 由題意結(jié)合二次函數(shù)的圖象,可得f(0)>0,f(1)<0,f(2)>0,解二次不等式,即可得到所求a的范圍.
解答 解:由y=f(x)=7x2-(a+13)x+a2-a-2,
由題意可得f(x)=0的兩根分別在(0,1)和(1,2)上,
可得$\left\{\begin{array}{l}{f(0)>0}\\{f(1)<0}\\{f(2)>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{{a}^{2}-a-2>0}\\{{a}^{2}-2a-8<0}\\{{a}^{2}-3a>0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{a>2或a<-1}\\{-2<a<4}\\{a>3或a<0}\end{array}\right.$,
解得3<a<4或-2<a<-1.
則當(dāng)3<a<4或-2<a<-1時(shí),
函數(shù)f(x)的一個(gè)零點(diǎn)在區(qū)間(0,1)上,
另一個(gè)零點(diǎn)在區(qū)間(1,2)上.
點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)問題的解法,注意運(yùn)用二次函數(shù)的圖象,考慮端點(diǎn)處函數(shù)值的符號(hào),考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3≤x≤0或x≥3} | B. | {x|x≤-3或-3≤x≤0} | C. | {x|-3≤x≤3} | D. | {x|x≤-3或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com