13.函數(shù)f(x)=$\frac{{-2{x^2}+x-3}}{x}$(x>0)的最大值為(  )
A.$-\frac{23}{8}$B.$\frac{1}{4}$C.$1-2\sqrt{6}$D.3

分析 將函數(shù)f(x)化為1-(2x+$\frac{3}{x}$),運(yùn)用基本不等式,即可得到所求最大值.

解答 解:∵x>0,∴f(x)=$\frac{{-2{x^2}+x-3}}{x}$
=-2x-$\frac{3}{x}$+1=1-(2x+$\frac{3}{x}$)≤1-2$\sqrt{2x•\frac{3}{x}}$=1-2$\sqrt{6}$.
當(dāng)且僅當(dāng)x=$\frac{\sqrt{6}}{2}$時(shí),取得最大值1-2$\sqrt{6}$.
故選:C.

點(diǎn)評 本題考查函數(shù)的最值的求法,注意運(yùn)用基本不等式,以及滿足的條件,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線y=tan$\frac{x}{2}$在點(diǎn)($\frac{π}{2}$,1)處的切線的斜率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)證明:AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若對于任意的x∈[-1,0],關(guān)于x的不等式3x2+2ax+b≤0恒成立,則a2+b2-2的最小值為( 。
A.$-\frac{1}{5}$B.$\frac{5}{4}$C.$\frac{4}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{x^2}{16}$+$\frac{y^2}{8}$=1的一點(diǎn)M到橢圓的一個焦點(diǎn)的距離等于4,那么點(diǎn)M到橢圓的另一個焦點(diǎn)的距離等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知橢圓kx2+5y2=5的一個焦點(diǎn)坐標(biāo)是(2,0),則k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,使用紙板可以折疊粘貼制作一個形狀為正六棱柱形狀的花型鎖盒蓋的紙盒.
(1)求該紙盒的容積;
(2)如果有一張長為60cm,寬為40cm的矩形紙板,則利用這張紙板最多可以制作多少個這樣的紙盒(紙盒必須用一張紙板制成).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知0<α<$\frac{π}{2}$,若cosα-sinα=-$\frac{\sqrt{5}}{5}$,試求下列各式的值:
(1)sinα•cosα;
(2)sinα+cosα;
(3)$\frac{2sinαcosα-cosα+1}{1-tanα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.集合A={x|x2-2x>0},B={y|y=2x,x>0},R是實(shí)數(shù)集,則(∁RA)∪B等于(  )
A.[1,2]B.(1,+∞)C.(1,2]D.[0,+∞)

查看答案和解析>>

同步練習(xí)冊答案