【題目】在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,AC∩BD=O,E是線段B1C(含端點(diǎn))上的一動(dòng)點(diǎn),則 ①OE⊥BD1;
②OE∥面A1C1D;
③三棱錐A1﹣BDE的體積為定值;
④OE與A1C1所成的最大角為90°.
上述命題中正確的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
【答案】D
【解析】解:①利用BD1⊥平面AB1C,可得OE⊥BD1 , 正確;②利用平面AB1C∥面A1C1D,可得OE∥面A1C1D,正確;③三棱錐A1﹣BDE的體積=三棱錐E﹣A1BD的體積,底面為定值,E到平面的距離A1BD為定值,∴三棱錐A1﹣BDE的體積為定值,正確;④E在B1處O,E與A1C1所成的最大角為90°,正確. 故選D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用棱柱的結(jié)構(gòu)特征的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n(n∈N*)項(xiàng)和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{cn}的前n(n∈N*)項(xiàng)和為Tn , 且 ,求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=a,點(diǎn)P在邊AB上,設(shè) =λ (λ>0),過(guò)點(diǎn)P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE將△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF將△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求證:B′C∥平面A′PE;
(2)是否存在正實(shí)數(shù)λ,使得二面角C﹣A′B′﹣P的大小為60°?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若曲線f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分別存在點(diǎn)A、B,使得△OAB是以原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,則實(shí)數(shù)a的取值范圍是( )
A.(e,e2)
B.(e, )
C.(1,e2)
D.[1,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知三點(diǎn)O(0,0),A(2, ),B(2 , ).
(1)求經(jīng)過(guò)O,A,B的圓C1的極坐標(biāo)方程;
(2)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程為 (θ是參數(shù)),若圓C1與圓C2外切,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t是參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=8cos(θ﹣ ).
(1)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點(diǎn),求|AB|的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a<0,曲線f(x)=2ax2+bx+c與曲線g(x)=x2+alnx在公共點(diǎn)(1,f(1))處的切線相同. (Ⅰ)試求c﹣a的值;
(Ⅱ)若f(x)≤g(x)+a+1恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)= x3+ax2+bx+c有極值點(diǎn)x1 , x2(x1>x2),f(x1)=x1 , 則關(guān)于x的方程[f(x)]2+2af(x)+b=0的不同實(shí)數(shù)根的個(gè)數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱 中,平面 側(cè)面 ,且 .
(1)求證: ;
(2)若直線 與平面 所成角的大小為 ,求銳二面角 的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com