設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在正常數(shù)M使得|f(x)|≤M|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為F函數(shù),給出下列函數(shù):①f(x)=x2;②;③;④f(x)=2sinx,其中是F函數(shù)的序號(hào)為    
【答案】分析:本題考查閱讀題意的能力,根據(jù)F函數(shù)的定義進(jìn)行判定,對(duì)于②根據(jù)單調(diào)性可求出存在正常數(shù)滿足條件,對(duì)于④根據(jù)三角函數(shù)的有界性可知存在正常數(shù)2滿足條件,即可得到結(jié)論.
解答:解:因?yàn)閨f(x)|=|x|,所以②是F函數(shù);
又因?yàn)閨f(x)|=2|sinx|≤2|x|,所以④也是F函數(shù),而容易得出①和③不是F函數(shù),
故答案為:②④.
點(diǎn)評(píng):本題主要考查了函數(shù)的最值及其幾何意義,以及分析問題解決問題的能力,屬于創(chuàng)新型題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時(shí),f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊(cè)答案