已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,15,18,20,且總體的中位數(shù)為10,若要使該總體的方差最小,則a、b的取值分別是
 
分析:根據(jù)這組數(shù)據(jù)的中位數(shù),得到兩個(gè)未知量的和是20,做出這組數(shù)據(jù)的平均數(shù)10,得到要使的方差最小,只有兩個(gè)數(shù)字的平方和最小,得到結(jié)果.
解答:解:∵個(gè)體的值由小到大依次為2,3,3,7,a,b,12,15,18,20,
且總體的中位數(shù)為10,
∴a+b=20,
∵這組數(shù)據(jù)的平均數(shù)是
2+3+3+7+a+b+12+15+18+20
10
=10,
∴要使該總體的方差最小a=10,b=10,
故答案為:10,10.
點(diǎn)評(píng):本題考查方差和中位數(shù),本題解題的關(guān)鍵是看清兩個(gè)未知量的和和平方和,本題是一個(gè)基礎(chǔ)題,若出現(xiàn)是一個(gè)送分題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,平均數(shù)為10.若要使該總體的方差最小,則a、b的取值分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,4,7,a,b,12,13.7,17.3,20(a>0,b>0),且總體的中位數(shù)為10.5,若總體的方差最小時(shí),則函數(shù)f(x)=ax2+2bx+1的最小值是
-9.5
-9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,14,18,20,且總體的中位數(shù)為10.5(將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個(gè)數(shù)據(jù)或最中間兩個(gè)數(shù)據(jù)的平均數(shù)叫做這組數(shù)據(jù)的中位數(shù)).
(1)求該總體的平均數(shù);
(2)求a的值,使該總體的方差最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知總體的各個(gè)體的值由小到大依次為2.5,3,3,6.5,a,b,12,13.7,18.3,20,且總體的中位數(shù)為10.5,下列中a、b的值使總體方差最小的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案