甲、乙兩名射手在一次射擊中的得分為兩個(gè)相互獨(dú)立的隨機(jī)變量ξ和η,且ξ、η分布列為
ξ
1
2
3
P
a
0.1
0.6
 
η
1
2
3
P
0.3
b
0.3
(1)求a、b的值;
(2)計(jì)算ξ、η的期望和方差,并以此分析甲、乙的技術(shù)狀況.
(1)a=0.3,b=0.4.(2)甲、乙兩人技術(shù)都不夠全面
(1)由離散型隨機(jī)變量的分布列性質(zhì)可知a+0.1+0.6=1,即a=0.3,同理0.3+b+0.3=1,b=0.4.
(2)E(ξ)=1×0.3+2×0.1+3×0.6=2.3,
E(η)=1×0.3+2×0.4+3×0.3=2.
V(ξ)=0.81,V(η)=0.6.
由計(jì)算結(jié)果E(ξ)>E(η),說明在一次射擊中甲的平均得分比乙高,但V(ξ)>V(η),說明甲得分的穩(wěn)定性不如乙,因此甲、乙兩人技術(shù)都不夠全面.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩名運(yùn)動(dòng)員參加“選拔測試賽”,在相同條件下,兩人5次測試的成績(單位:分)記錄如下:
甲  86   77   92   72   78
乙  78   82   88   82   95
(1)用莖葉圖表示這兩組數(shù)據(jù);.
(2)現(xiàn)要從中選派一名運(yùn)動(dòng)員參加比賽,你認(rèn)為選派誰參賽更好?說明理由(不用計(jì)算);
(3)若將頻率視為概率,對運(yùn)動(dòng)員甲在今后三次測試成績進(jìn)行預(yù)測,記這三次成績高于分的次數(shù)為,求的分布列和數(shù)學(xué)期望..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某選修課的考試按A級、B級依次進(jìn)行,只有當(dāng)A級成績合格時(shí),才可繼續(xù)參加B級的考試.已知每級考試允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)級別的成績均合格方可獲得該選修課的合格證書.現(xiàn)某人參加這個(gè)選修課的考試,他A級考試成績合格的概率為,B級考試合格的概率為.假設(shè)各級考試成績合格與否均互不影響.
(1)求他不需要補(bǔ)考就可獲得該選修課的合格證書的概率;
(2)在這個(gè)考試過程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為,求的數(shù)學(xué)期望E

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如下:
甲公司某員工A
 
乙公司某員工B
3
9
6
5
8
3
3
2
3
4
6
6
6
7
7
 
 
 
 
 
 
0
1
4
4
2
2
2
 
 
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:
甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為(單位:元),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

盒子中有大小相同的球10個(gè),其中標(biāo)號為1的球3個(gè),標(biāo)號為2的球4個(gè),標(biāo)號為5的球3個(gè).先從盒子中任取2個(gè)球(假設(shè)取到每個(gè)球的可能性相同),設(shè)取到兩個(gè)球的編號之和為ξ.
(1)求隨機(jī)變量ξ的分布列;
(2)求兩個(gè)球編號之和大于6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某游戲的得分為1,2,3,4,5,隨機(jī)變量表示小白玩游戲的得分.若=4.2,則小白得5分的概率至少為         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為防止山體滑坡,某地決定建設(shè)既美化又防護(hù)的綠化帶,種植松樹、柳樹等植物.某人一次種植了n株柳樹,各株柳樹成活與否是相互獨(dú)立的,成活率為p,設(shè)ξ為成活柳樹的株數(shù),數(shù)學(xué)期望E(ξ)=3,標(biāo)準(zhǔn)差σ(ξ)為.
(1)求n、p的值并寫出ξ的分布列;
(2)若有3株或3株以上的柳樹未成活,則需要補(bǔ)種,求需要補(bǔ)種柳樹的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一高考考生咨詢中心有A、B、C三條咨詢熱線.已知某一時(shí)刻熱線A、B占線的概率均為0.5,熱線C占線的概率為0.4,各熱線是否占線相互之間沒有影響,假設(shè)該時(shí)刻有ξ條熱線占線,則隨機(jī)變量ξ的期望為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

多選題是標(biāo)準(zhǔn)化考試的一種題型,一般是從A、B、C、D四個(gè)選項(xiàng)中選出所有正確的答案.在一次考試中有5道多選題,某同學(xué)一道都不會(huì),他隨機(jī)的猜測,則他答對題數(shù)的期望值為        

查看答案和解析>>

同步練習(xí)冊答案