12.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≥2}\\{2x-y≤4}\\{x-y≥0}\end{array}\right.$,則z=x+2y的最小值為2.

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x+y≥2}\\{2x-y≤4}\\{x-y≥0}\end{array}\right.$作出可行域如圖,

化目標(biāo)函數(shù)z=x+2y為$y=-\frac{x}{2}+\frac{z}{2}$.
由圖可知,當(dāng)直線$y=-\frac{x}{2}+\frac{z}{2}$過A時(shí),直線在y軸上的截距最小,z有最小值為2
故答案為:2.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.直線x-ytanα-5=0(α∈(0,$\frac{π}{4}$))的傾斜角的變化范圍是($\frac{π}{4},\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.直線l過點(diǎn)A(1,2),且不過第四象限,那么直線l的斜率的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求函數(shù)y=x2+2x(x≥0)的反函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立直角坐標(biāo)系,將曲線C1$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù))上所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的2和$\frac{1}{2}$后得到曲線C2
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2)已知直線1:ρ(cosθ+2sinθ)=4,點(diǎn)P在曲線C2上,求點(diǎn)P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)y1=40.9,y2=log${\;}_{\frac{1}{2}}$4.3,y3=($\frac{1}{3}$)1.5,則( 。
A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x-10|+|x-20|,且滿足f(x)<10a(a∈R)的解集不是空集.
(Ⅰ)求實(shí)數(shù)a的取值范圍;
(Ⅱ)求a+$\frac{4}{{a}^{2}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=cos(x+$\frac{π}{6}$).
(1)f($\frac{5π}{2}$)+f($\frac{11π}{3}$)的值;
(2)若f(x)=$\frac{1}{4}$,求sin($\frac{4π}{3}$-x)+4cos2($\frac{2π}{3}$+x)的值;
(3)若x∈(-$\frac{π}{3}$,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.現(xiàn)有10個(gè)數(shù),它們能構(gòu)成一個(gè)以1為首項(xiàng),-2為公比的等比數(shù)列,若從這10個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),則它小于8的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{7}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案