【題目】已知橢圓上存在關(guān)于直線對(duì)稱的相異兩點(diǎn),則實(shí)數(shù)的取值范圍是____.
【答案】
【解析】
根據(jù)對(duì)稱性可知線段AB被直線y=x+m垂直平分,且AB的中點(diǎn)M(x0,y0)在直線y=x+m上,故可設(shè)直線AB的方程為y=﹣x+b,聯(lián)立方程整理可得5x2﹣8bx+4b2﹣4=0,結(jié)合方程的根與系數(shù)關(guān)系可求中點(diǎn)M,由△=64b2﹣80(b2﹣1)>0可求b的范圍,由中點(diǎn)M在直線yx+m可得b,m的關(guān)系,從而可求m的范圍
設(shè)橢圓上存在關(guān)于直線y=x+m對(duì)稱的兩點(diǎn)為A(x1,y1),B(x2,y2)
根據(jù)對(duì)稱性可知線段AB被直線y=x+m垂直平分,且AB的中點(diǎn)M(x0,y0)在直線y=x+m上,且KAB=﹣1
故可設(shè)直線AB的方程為y=﹣x+b
聯(lián)立方程整理可得5x2﹣8bx+4b2﹣4=0
∴,y1+y2=2b﹣(x1+x2)=
由△=64b2﹣80(b2﹣1)>0可得
∴,=
∵AB的中點(diǎn)M()在直線y=x+m上
∴,
∴
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(Ⅰ)證明:CE∥平面PAB;
(Ⅱ)求直線CE與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(diǎn)(,),且兩個(gè)焦點(diǎn),的坐標(biāo)依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè),是橢圓上的兩個(gè)動(dòng)點(diǎn),為坐標(biāo)原點(diǎn),直線的斜率為,直線的斜率為,求當(dāng)為何值時(shí),直線與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 等比數(shù)列{bn}的前n項(xiàng)和為Tn , a1=﹣1,b1=1,a2+b2=2.
(Ⅰ)若a3+b3=5,求{bn}的通項(xiàng)公式;
(Ⅱ)若T3=21,求S3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的左、右焦點(diǎn)分別為,右準(zhǔn)線與軸的交點(diǎn)為,.
(1)已知點(diǎn)在橢圓上,求實(shí)數(shù)的值;
(2)已知定點(diǎn).
① 若橢圓上存在點(diǎn),使得,求橢圓的離心率的取值范圍;
② 如圖,當(dāng)時(shí),記為橢圓上的動(dòng)點(diǎn),直線分別與橢圓交于另一點(diǎn),若且,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為( )
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點(diǎn),且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點(diǎn)P是直線3x+4y+8=0上的動(dòng)點(diǎn),PA,PB是圓M的兩條切線,A,B為切點(diǎn),求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和雙曲線有共同焦點(diǎn),是它們的一個(gè)交點(diǎn),,記橢圓和雙曲線的離心率分別,則的最小值是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com