如圖,在四棱柱
(I)當(dāng)正視方向與向量的方向相同時,畫出四棱錐的正視圖(要求標(biāo)出尺寸,并寫出演算過程);
(II)若M為PA的中點,求證:求二面角
(III)求三棱錐的體積.
(I)見解析(II)見解析(III)
【解析】(Ⅰ)在梯形中,過點作,垂足為,
由已知得,四邊形為矩形,
在中,由,,依勾股定理得:
,從而
又由平面得,
從而在中,由,,得
正視圖如右圖所示:
(Ⅱ)取中點,連結(jié),
在中,是中點,
∴,,又,
∴,
∴四邊形為平行四邊形,∴
又平面,平面
∴平面
(Ⅲ)
又,,所以
解法二:
(Ⅰ)同解法一
(Ⅱ)取的中點,連結(jié),
在梯形中,,且
∴四邊形為平行四邊形
∴,又平面,平面
∴平面,又在中,
平面,平面
∴平面.又,
∴平面平面,又平面
∴平面
(Ⅲ)同解法一
對于立體幾何的考查所有關(guān)系的決斷往往基于對公理定理推論掌握的比較熟練,又要善于做出一線輔助線加以證明,再者就是體積和表面積的計算公式要熟悉.
【考點定位】 本題主要考查直線與直線、直線與平面的位置關(guān)系及幾何體的三視圖和體積等基礎(chǔ)知識,考查空間想象能力、推理論證能力、運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬容易題
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com