方程x2-y2=0表示的圖形是( )
A.兩條相交直線
B.兩條平行直線
C.兩條重合直線
D.一個(gè)點(diǎn)
【答案】分析:化簡方程得到y(tǒng)=±x,可以判斷圖形.
解答:解:由方程x2-y2=0,可得y=±x,其圖形是兩條相交的直線.
故選A.
點(diǎn)評(píng):本題關(guān)鍵是化簡,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B(-2,0),C(2,0),A(x,y),給出△ABC滿足的條件,就能得到動(dòng)點(diǎn)A的軌跡方程,下表給出了一些條件及方程:
則滿足條件①、②、③的軌跡方程分別為
 
(用代號(hào)C1、C2、C3填入).
條  件 方  程
①△ABC的周長為10 C1:y2=25
②△ABC的面積為10 C2:x2+y2=4(y≠0)
③△ABC中,∠A=90° C3
x2
9
+
y2
5
=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上、寫出線段s的表達(dá)式,并說明理由;
(3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過這種對(duì)應(yīng)關(guān)系的研究,填寫表(表中s1是(1)中圓C1的對(duì)應(yīng)線段).
    線段s與線段s1的關(guān)系 m、r的取值或表達(dá)式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A(x,y),B(-2,0),C(2,0),給出△ABC滿足的條件,就能得到動(dòng)點(diǎn)A的軌跡方程,下表給出了一些條件及方程:
條件 方程
①△ABC周長為10;
②△ABC面積為10;
③△ABC中,∠A=90°
E1:y2=25;
E2:x2+y2=4(y≠0);
E3
x2
9
+
y2
5
=1(y≠0)
則滿足條件①、②、③的軌跡方程分別用代號(hào)表示為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,B(-2,0),C(2,0),A(x,y),給出△ABC滿足的條件,就能得到動(dòng)點(diǎn)A的軌跡方程,下表給出了一些條件及方程:
條件 方程
①△ABC周長為10 C1y2=25
②△ABC面積為10 C2x2+y2=4(y≠0)
③△ABC中,∠A=90° C3
x2
9
+
y2
5
=1(y≠0)
則滿足條件①、②、③的點(diǎn)A軌跡方程按順序分別是(  )
A、C3、C1、C2
B、C2、C1、C3
C、C1、C3、C2
D、C3、C2、C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省營口市高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在△ABC中,B(-2,0),C(2,0),A(x,y),給出△ABC滿足的條件,就能得到動(dòng)點(diǎn)A的軌跡方程,下表給出了一些條件及方程:
則滿足條件①、②、③的軌跡方程分別為    (用代號(hào)C1、C2、C3填入).
條  件方  程
①△ABC的周長為10C1:y2=25
②△ABC的面積為10C2:x2+y2=4(y≠0)
③△ABC中,∠A=90°C3

查看答案和解析>>

同步練習(xí)冊(cè)答案