函數(shù)f(x)=logax(a>0,a≠1),若f(x1)-f(x2)=1,則f(x12)-f(x22)等于( 。
A、2
B、1
C、
1
2
D、loga2
分析:先將x1、x2代入到函數(shù)f(x)的解析式得到關(guān)于x1、x2的關(guān)系式,再表示出f(x12)-f(x22)根據(jù)對數(shù)的運算性質(zhì)可得答案.
解答:解:∵f(x1)-f(x2)=logax1-logax2=1;
∴f(x12)-f(x22)=logax12-logax22=2(logax1-logax2)=2.
故選A.
點評:本題主要考查對數(shù)的運算性質(zhì).屬基礎題.對數(shù)函數(shù)的運算性質(zhì)在每年的高考中都是必考內(nèi)容,應熟練地掌握.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

5、設函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是( 。
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•茂名二模)設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案