【題目】下列說法正確的是( )

A.棱錐的側棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐

B.四棱錐的四個側面都可以是直角三角形

C.有兩個平面互相平行,其余各面都是梯形的多面體是棱臺

D.棱臺的各側棱延長后不一定交于一點

【答案】B

【解析】

根據(jù)棱錐和棱臺的幾何體的特征,逐項判斷,即可求得答案.

對于A,若六棱錐的所有棱長都相等,則底面多邊形是正六邊形,若以正六邊形為底面,側棱長必然要大于底面邊長,故A錯誤;

對于B,四棱錐的四個側面都可以是直角三角形,如圖所示:

B正確;

對于C,有兩個平面互相平行,其余各面都是梯形,若側棱不相交于一點,則不是棱臺,故C錯誤;

對于D,由于棱臺是用平行于底面的平面截棱錐得到的,所以棱臺的各側棱延長后一定交于一點,故D錯誤.

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級模仿《中國詩詞大會》節(jié)目舉辦學校詩詞大會,進入正賽的條件為:電腦隨機抽取10首古詩,參賽者能夠正確背誦6首及以上的進入正賽,若學生甲參賽,他背誦每一首古詩的正確的概率均為

(1)求甲進入正賽的概率;

(2)若進入正賽,則采用積分淘汰制,規(guī)則是:電腦隨機抽取4首古詩,每首古詩背誦正確加2分,錯誤減1.由于難度增加,甲背誦每首古詩正確的概率為,求甲在正賽中積分的概率分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市收集并整理了該市20191月份至10月份各月最低氣溫與最高氣溫(單位:)的數(shù)據(jù),繪制了下面的折線圖.

已知該城市各月的最低氣溫與最高氣溫具有較好的線性關系,則根據(jù)折線圖,下列結論正確的是

A.最低氣溫與最高氣溫為正相關B.10月的最高氣溫不低于5月的最高氣溫

C.月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在1D.最低氣溫低于0 的月份有4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于給定數(shù)列,若數(shù)列滿足:對任意,都有,則稱數(shù)列是數(shù)列的“相伴數(shù)列”.

(1)若,且數(shù)列是數(shù)列的“相伴數(shù)列”,試寫出的一個通項公式,并說明理由;

(2)設,證明:不存在等差數(shù)列,使得數(shù)列是數(shù)列的“相伴數(shù)列”;

(3)設,(其中),若是數(shù)列的“相伴數(shù)列”,試分析實數(shù)b、q的取值應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】13分)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°AD=AC=1,OAC中點,PO⊥平面ABCD,PO=2MPD中點.

)證明:PB∥平面ACM;

)證明:AD⊥平面PAC;

)求直線AM與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、、均為正整數(shù),且,為一素數(shù),、、進制表示分別為,其中,.證明:

(1)若,且對整數(shù) 均有,則,其中,表示不超過實數(shù)的最大整數(shù).

(2) ,其中,表示集合A中元素的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設甲、乙、丙三個羽毛球協(xié)會的運動員人數(shù)分別為189,18,先采用分層抽樣的方法從這三個協(xié)會中抽取5名運動員參加比賽.

1)求應從這三個協(xié)會中分別抽取的運動員人數(shù);

2)將抽取的5名運動員進行編號,編號分別為,從這5名運動員中隨機抽取2名參加雙打比賽. 編號為的兩名運動員至少有一人被抽到為事件A,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國足球甲聯(lián)賽共有12個足球俱樂部參加,實行主客場雙循環(huán)賽制即任何兩隊分別在主場和客場各比賽一場,勝一場得3,平一場各得1負一場得0在聯(lián)賽結束后按積分的高低排出名次.則在積分榜上位次相鄰的兩支球隊積分差距最多可達_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

同步練習冊答案