已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i,當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
(1)零;(2)純虛數(shù);(3)z=2+5i;(4)表示復(fù)數(shù)z對應(yīng)的點在第四象限.
【答案】分析:(1)實部與虛部同時為零,求解即可;
(2)實部為0,虛部不為0,復(fù)數(shù)是純虛數(shù),求出m即可;
(3)實部為2,虛部為5求解即可得到m的值,使得z=2+5i
(4)表示復(fù)數(shù)z對應(yīng)的點在第四象限.實部大于0,虛部小于哦,求出m的范圍即可.
解答:解:
(1)由可得m=1;(3分)
(2)由可得m=0;(6分)
(3)由可得m=2;(10分)
(4)由題意,解得即-3<m<0(14分)
點評:本題是基礎(chǔ)題,考查復(fù)數(shù)的基本運算,復(fù)數(shù)的基本概念,不等式的解法.送分題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i,當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
(1)零;(2)純虛數(shù);。3)z=2+5i.
2、設(shè)復(fù)數(shù)z滿足|z|=1,且(3+4i)•z是純虛數(shù),求
.
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i,當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
(1)零;(2)純虛數(shù);(3)z=2+5i;(4)表示復(fù)數(shù)z對應(yīng)的點在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=m(m+1)+mi,當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
(1)虛數(shù);
(2)純虛數(shù);
(3)復(fù)平面內(nèi)第二、四象限角平分線上的點對應(yīng)的復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i(m∈R)
(1)若z是實數(shù),求m的值;
(2)若z是純虛數(shù),求m的值;
(3)若在復(fù)平面C內(nèi),z所對應(yīng)的點在第四象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i,當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是:
(1)零;
(2)純虛數(shù); 
(3)z=2+5i.

查看答案和解析>>

同步練習(xí)冊答案