【題目】近幾年,我國在電動(dòng)汽車領(lǐng)域有了長足的發(fā)展,電動(dòng)汽車的核心技術(shù)是動(dòng)力總成,而動(dòng)力總成的核心技術(shù)是電機(jī)和控制器,我國永磁電機(jī)的技術(shù)已處于國際領(lǐng)先水平.某公司計(jì)劃今年年初用196萬元引進(jìn)一條永磁電機(jī)生產(chǎn)線,第一年需要安裝、人工等費(fèi)用24萬元,從第二年起,包括人工、維修等費(fèi)用每年所需費(fèi)用比上一年增加8萬元,該生產(chǎn)線每年年產(chǎn)值保持在100萬元.
(1)引進(jìn)該生產(chǎn)線幾年后總盈利最大,最大是多少萬元?
(2)引進(jìn)該生產(chǎn)線幾年后平均盈利最多,最多是多少萬元?
【答案】(1)引進(jìn)生產(chǎn)線10年后總盈利最大為204萬元(2)引進(jìn)生產(chǎn)線7年后平均盈利最多為24萬元
【解析】
(1)設(shè)引進(jìn)設(shè)備n年后總盈利為萬元,設(shè)除去設(shè)備引進(jìn)費(fèi)用,第n年的成本為,構(gòu)成一等差數(shù)列,由等差數(shù)列前公式求得第年總成本,這樣可得總盈利,由二次函數(shù)性質(zhì)可得最大值;
(2)平均盈利為,可用基本不等式求得最大值.
解:(1)設(shè)引進(jìn)設(shè)備n年后總盈利為萬元,設(shè)除去設(shè)備引進(jìn)費(fèi)用,第n年的成本為,構(gòu)成一等差數(shù)列,前n年成本之和為萬元;
故,,
所以當(dāng)時(shí),萬元;
答:引進(jìn)生產(chǎn)線10年后總盈利最大為204萬元
(2)設(shè)n年后平均盈利為萬元,則,
因?yàn)?/span>,
當(dāng),,當(dāng)且僅當(dāng)取得等號(hào),
故時(shí),萬元:
答:引進(jìn)生產(chǎn)線7年后平均盈利最多為24萬元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=k(x+1)與C相切于點(diǎn)A,|AF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線l交C于M,N兩點(diǎn),T是MN的中點(diǎn),若|MN|=8,求點(diǎn)T到y軸距離的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在以直角坐標(biāo)原點(diǎn)為極點(diǎn),的非負(fù)半軸為極軸的極坐標(biāo)系下,曲線的方程是,將向上平移1個(gè)單位得到曲線.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若曲線的切線交曲線于不同兩點(diǎn),切點(diǎn)為.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令.求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受電視機(jī)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)電視機(jī)的利潤與該電視機(jī)首次出現(xiàn)故障的時(shí)間有關(guān).某電視機(jī)制造廠生產(chǎn)甲、乙兩種型號(hào)電視機(jī),保修期均為2年,現(xiàn)從該廠已售出的兩種型號(hào)電視機(jī)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故障時(shí)間x(年) | |||||
電視機(jī)數(shù)量(臺(tái)) | 3 | 5 | 42 | 8 | 42 |
每臺(tái)利潤(千元) | 1 | 2 | 3 | 1.8 | 2.8 |
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲種型號(hào)電視機(jī)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)該廠預(yù)計(jì)今后這兩種型號(hào)電視機(jī)銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種型號(hào)電視機(jī),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該產(chǎn)生哪種型號(hào)電視機(jī)?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】4個(gè)不同的球,4個(gè)不同的盒子,把球全部放入盒內(nèi).
(1)恰有1個(gè)盒不放球,共有幾種放法?
(2)恰有1個(gè)盒內(nèi)有2個(gè)球,共有幾種放法?
(3)恰有2個(gè)盒不放球,共有幾種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.
(1)求點(diǎn),的極坐標(biāo);
(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計(jì)其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時(shí)劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.
(1)求每件產(chǎn)品的平均銷售利潤;
(2)該企業(yè)主管部門為了解企業(yè)年?duì)I銷費(fèi)用(單位:萬元)對(duì)年銷售量(單位:萬件)的影響,對(duì)該企業(yè)近年的年?duì)I銷費(fèi)用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點(diǎn)圖(如圖2)及一些統(tǒng)計(jì)量的值.
表中,,,.
根據(jù)散點(diǎn)圖判斷,可以作為年銷售量(萬件)關(guān)于年?duì)I銷費(fèi)用(萬元)的回歸方程.
①求關(guān)于的回歸方程;
②用所求的回歸方程估計(jì)該企業(yè)每年應(yīng)投入多少營銷費(fèi),才能使得該企業(yè)的年收益的預(yù)報(bào)值達(dá)到最大?(收益銷售利潤營銷費(fèi)用,取)
附:對(duì)于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com