已知△ABC的平面直觀圖是邊長為1的正三角形,那么原△ABC的面積為(  )
分析:利用斜二測畫法的規(guī)則即可求出原圖中的邊AB及其邊上的高,進而即可求出面積.
解答:解:如圖所示,
在直觀圖中分別作CD∥x軸、CE∥y軸交y軸于D點、
交x軸于E點.
在△ACD中,由正弦定理得
AD
sin120°
=
CD
sin15°
=
1
sin45°
,可得AD=
6
2
CD=
3
-1
2

在原直角坐標系中,AB=AB=1,AD=2AD=
6
,
CD=CD=
3
-1
2

∴S△ABC=
1
2
AB•AD
=
1
2
×1×
6
=
6
2

故答案為A.
點評:熟練掌握斜二測畫法的規(guī)則是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中,AC=BC=2,∠ACB=120°,D為AB的中點,E,F(xiàn)分別在線段AC,BC上,且EF∥AB,EF交CD于G,把△ADC沿CD折起,如圖所示,

(1)求證:E1F∥平面A1BD;
(2)當二面角A1-CD-B為直二面角時,是否存在點F,使得直線A1F與平面BCD所成的角為60°,若存在求CF的長,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖所示,PQ為平面α、β的交線,已知二面角α-PQ-β為直二面角,A∈PQ,B∈α,C∈β,CA=CB=kAB(k∈R*),∠BAP=45°.
(1)證明:BC⊥PQ;
(2)設點C在平面α內的射影為點O,當k取何值時,O在平面ABC內的射影G恰好為△ABC的重心?
(3)當k=
6
3
時,求二面角B-AC-P的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知線段VA⊥平面ABC,二面角A-VB-C是直二面角,試判斷△ABC的形狀,并說明判斷理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年浙江省溫州市八校聯(lián)考高三(上)期初數(shù)學試卷(文科)(解析版) 題型:解答題

已知△ABC中,AC=BC=2,∠ACB=120°,D為AB的中點,E,F(xiàn)分別在線段AC,BC上,且EF∥AB,EF交CD于G,把△ADC沿CD折起,如圖所示,

(1)求證:E1F∥平面A1BD;
(2)當二面角A1-CD-B為直二面角時,是否存在點F,使得直線A1F與平面BCD所成的角為60°,若存在求CF的長,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年湖北省武漢二中高一(下)期末數(shù)學試卷(解析版) 題型:解答題

如圖所示,PQ為平面α、β的交線,已知二面角α-PQ-β為直二面角,A∈PQ,B∈α,C∈β,CA=CB=kAB(k∈R*),∠BAP=45°.
(1)證明:BC⊥PQ;
(2)設點C在平面α內的射影為點O,當k取何值時,O在平面ABC內的射影G恰好為△ABC的重心?
(3)當時,求二面角B-AC-P的大小.

查看答案和解析>>

同步練習冊答案