函數(shù)數(shù)學(xué)公式的單調(diào)遞增區(qū)間為________.

(-∞,-1)、(2,+∞)
分析:求出函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)大于0,解此不等式,所得的解集即是函數(shù)的單調(diào)遞增區(qū)間
解答:∵=
∴y′=3x2-
令y′>0,得3x2->0,整理得3x4-6x3+3x2-12>0
即3(x-2)(x+1)(x2-x+2)>0
由于x2-x+2>0
故3(x-2)(x+1)(x2-x+2)>0可變?yōu)椋▁-2)(x+1)>0,解得x>2,或x<-1
所以函數(shù)的單調(diào)遞增區(qū)間為(-∞,-1)、(2,+∞)
故答案為(-∞,-1)、(2,+∞)
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解本題,關(guān)鍵是正確求出函數(shù)的導(dǎo)數(shù)且對所得的不等式能順利解出.本題中有一個難點(diǎn),即所和的不等式是一個高次不等式,求解這樣的不等式只能采取分解因式降冪的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax2+(2+a)x+1是偶函數(shù),則函數(shù)的單調(diào)遞增區(qū)間為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(x-
π
3
),x∈[0,2π]
的圖象上各點(diǎn)的縱坐標(biāo)不變橫坐標(biāo)伸長到原來的2倍,再向左平移
π
6
個單位,所得函數(shù)的單調(diào)遞增區(qū)間為
[-
π
6
,
2
],[
2
,
23π
6
]
[-
π
6
,
2
],[
2
23π
6
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)(x∈R)上任一點(diǎn)(x0,f(x0))處的切線斜率k=(x0-3)(x0+1)2,則該函數(shù)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽無為開城中學(xué)高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

求函數(shù)的單調(diào)遞增區(qū)間為________________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)的單調(diào)遞增區(qū)間為                。

 

查看答案和解析>>

同步練習(xí)冊答案