6.求證:$\frac{4}{9}$>log52>$\frac{2}{5}$.

分析 由520>245>518,得到${5}^{\frac{4}{9}}$>2>${5}^{\frac{2}{5}}$,由此能證明$\frac{4}{9}$>log52>$\frac{2}{5}$.

解答 證明:∵520>245>518,
∴${5}^{\frac{20}{45}}$>${2}^{\frac{45}{45}}$>${5}^{\frac{18}{45}}$,
即${5}^{\frac{4}{9}}$>2>${5}^{\frac{2}{5}}$,
∴$lo{g}_{5}5\frac{4}{9}$>log52>$lo{g}_{5}5\frac{2}{5}$,
∴$\frac{4}{9}$>log52>$\frac{2}{5}$.

點評 本題考查三個數(shù)的大小關系的證明,是基礎題,解題時要認真審題,注意指數(shù)、對數(shù)的性質、運算法則的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-1|+|3x-$\frac{3}{4}$|.
(1)求不等式f(x)<1的解集;
(2)若實數(shù)a,b,c滿足a>0,b>0,c>0且a+b+c=$\frac{3}{2}$.求證:$\frac{^{2}}{a}$+$\frac{{c}^{2}}$+$\frac{{a}^{2}}{c}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|).
(1)求實數(shù)a,b的值;
(2)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系.已知曲線C1的極坐標方程為ρ2=$\frac{3}{1+2co{s}^{2}θ}$,直線l的極坐標方程為ρ=$\frac{4}{sinθ+cosθ}$.
(Ⅰ)寫出曲線C1與直線l的直角坐標方程;
(Ⅱ)設Q為曲線C1上一動點,求Q點到直線l距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知命題p:所有等差數(shù)列{an}的前n項和是Sn=$\frac{n({a}_{1}+{a}_{n})}{2}$,命題q:有的等比數(shù)列{an}的前n項和不是Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$(q是公比).
(1)寫出¬p和¬q,并判斷真假.
(2)寫出p∧q、p∨q、(¬p)∧q、(¬q)∨p.并判斷真假.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)y=a1-x-2(a>0且a≠1)恒過點P,若角α的終邊過點P,則α角的余弦值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a2>a1>0,b2>b1>0,且a1+a2=b1+b2=1,記A=a1b1+a2b2,B=a1b2+a2b1,C=$\frac{1}{2}$,則按A、B、C從小到大的順序排列是B<C<A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知正方體ABCD-A1B1C1D1的棱長為1,則點C1到直線BD的距離為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知p:x2+x-2>0,q:x>a,若q是p的充分不必要條件,則a的取值范圍是( 。
A.(-∞,-2)B.(-2,+∞)C.(-2,1]D.[1,+∞)

查看答案和解析>>

同步練習冊答案