一動圓過點A(0,1),圓心在拋物線x2=4y上,且恒與定直線l相切,則直線l的方程為   
【答案】分析:要使圓過點A(0,1)且與定直線l相切,需圓心到定點的距離與定直線的距離相等,根據(jù)拋物線的定義可知,定直線正是拋物線的準(zhǔn)線.
解答:解:根據(jù)拋物線方程可知拋物線焦點為(0,1),
∴定點A為拋物線的焦點,
要使圓過點A(0,1)且與定直線l相切,需圓心到定點的距離與定直線的距離相等,
根據(jù)拋物線的定義可知,定直線正是拋物線的準(zhǔn)線,準(zhǔn)線方程為y=-1
故答案為:y=-1.
點評:本題考查拋物線的定義,考查拋物線的性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一動圓過點A(0,1),圓心在拋物線x2=4y上,且恒與定直線l相切,則直線l的方程為
y=-1
y=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)一動圓過定點P(0,1),且與定直線l:y=-1相切.
(1)求動圓圓心C的軌跡方程;
(2)若(1)中的軌跡上兩動點記為A(x1,y1),B(x2,y2),且x1x2=-16.
①求證:直線AB過一定點,并求該定點坐標(biāo);
②求
1
|PA|
+
1
|PB|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年天津市五區(qū)縣高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:填空題

一動圓過點A(0,1),圓心在拋物線上,且恒與定直線相切,則直線

的方程為         。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一動圓過點A(0,1),圓心在拋物線x2=4y上,且恒與定直線l相切,則直線l的方程為______.

查看答案和解析>>

同步練習(xí)冊答案