直線(xiàn)x-y+a=0與圓(x-a)2+y2=2至多有一個(gè)公共點(diǎn),則a的取值范圍為
 
考點(diǎn):直線(xiàn)與圓的位置關(guān)系
專(zhuān)題:直線(xiàn)與圓
分析:由題意得到直線(xiàn)與圓相離或者相切,所以圓心到直線(xiàn)的距離≥半徑,由此解得a的范圍.
解答: 解:由已知,圓(x-a)2+y2=2的圓心為(a,0),半徑為
2
,由題意,直線(xiàn)與圓相離或者相切,
所以
|a-0+a|
2
2
,解得a≤-1或a≥1;
故答案為:a≤-1或a≥1;
點(diǎn)評(píng):本題考查了直線(xiàn)與圓的位置關(guān)系,關(guān)鍵是由題意得到圓心到直線(xiàn)的距離與半徑的不等式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-2x+4,令Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)+f(1).
(1)求Sn;
(2)設(shè)bn=
an
Sn
(a∈R)且bn<bn+1對(duì)所有正整數(shù)n恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C的圓心在曲線(xiàn)y=
2
x
上,⊙C過(guò)坐標(biāo)原點(diǎn)O,且與x軸、y軸交于A(yíng)、B兩點(diǎn),則△OAB的面積是(  )
A、2B、3C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知隨機(jī)變量X服從正態(tài)分布N(0,σ2),若P(X>2)=0.023,則P(-2≤X≤2)等于( 。
A、0.477
B、0.628
C、0.954
D、0.977

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-x+a有零點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
m
=(sinx,cosx),x∈[0,π],
n
=(1,-
3
).
(1)若
m
n
,求角x;
(2)若
a
=2
m
+
n
,求|
a
|的最大值及取到最大值時(shí)相應(yīng)的x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx+(a-1)x,a∈R
(1)當(dāng)a=1時(shí),求函數(shù)f(x)圖象在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)當(dāng)a<0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞)且x1≠x2
f(x2)-f(x1)
x2-x1
>a恒成立?若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2(4x+2x+p)無(wú)零點(diǎn),則實(shí)數(shù)p的取值范圍為( 。
A、p≤1
B、p≥1
C、p≤
5
4
D、p>
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有兩枚大小相同,質(zhì)地均勻的正四面體玩具,每個(gè)玩具的各個(gè)面上分別寫(xiě)著數(shù)字1,2,3,4.甲、乙各摘擲一枚玩具一次.
(1)求事件“兩個(gè)朝下的面上出現(xiàn)的數(shù)字之和不大于4”的概率;
(2)若記誰(shuí)得到朝下的面上出現(xiàn)的數(shù)字大誰(shuí)獲勝(若數(shù)字相同則為平局),求“甲不敗”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案