已知函數(shù)和函數(shù)的圖像關(guān)于直線對稱,

則函數(shù)的解析式為

 

【答案】

【解析】

試題分析:根據(jù)題意,由于函數(shù)和函數(shù)的圖像關(guān)于直線對稱,則可知的反函數(shù),那么可以解得 ,故答案為

考點(diǎn):反函數(shù)

點(diǎn)評:本題屬于基礎(chǔ)性題,解題思路清晰,方向明確,注意抓住函數(shù)y=ex的圖象與函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱這一特點(diǎn),確認(rèn)f(x)是原函數(shù)的反函數(shù)非常重要,是本題解決的突破口.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年山東猜題卷)已知函數(shù).其中

(Ⅰ)若函數(shù)的圖像的一個公共點(diǎn)恰好在x軸上,求的值;

(Ⅱ)若函數(shù)圖像相交于不同的兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn),試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應(yīng)的的值;如果沒有,請說明理由.

(Ⅲ)若是方程的兩根,且滿足,證明:當(dāng)時,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù).其中

   (Ⅰ)若函數(shù)的圖像的一個公共點(diǎn)恰好在x軸上,求的值;

   (Ⅱ)若函數(shù)圖像相交于不同的兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn),試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應(yīng)的的值;如果沒有,請說明理由.

   (Ⅲ)若是方程的兩根,且滿足,證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù).其中

   (Ⅰ)若函數(shù)的圖像的一個公共點(diǎn)恰好在x軸上,求的值;

   (Ⅱ)若函數(shù)圖像相交于不同的兩點(diǎn)A、B,O為坐標(biāo)原點(diǎn),試問:△OAB的面積S有沒有最值?如果有,求出最值及所對應(yīng)的的值;如果沒有,請說明理由.

   (Ⅲ)若是方程的兩根,且滿足,證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的最小正周期和最大值;

(2)求函數(shù)的增區(qū)間;

(3)函數(shù)的圖象可以由函數(shù)的圖象經(jīng)過怎樣的變換得到?

【解析】本試題考查了三角函數(shù)的圖像與性質(zhì)的運(yùn)用。第一問中,利用可知函數(shù)的周期為,最大值為。

第二問中,函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。故當(dāng),解得x的范圍即為所求的區(qū)間。

第三問中,利用圖像將的圖象先向右平移個單位長度,再把橫坐標(biāo)縮短為原來的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變),再向上平移1個單位即可。

解:(1)函數(shù)的最小正周期為,最大值為。

(2)函數(shù)的單調(diào)區(qū)間與函數(shù)的單調(diào)區(qū)間相同。

 

所求的增區(qū)間為,

所求的減區(qū)間為,。

(3)將的圖象先向右平移個單位長度,再把橫坐標(biāo)縮短為原來的 (縱坐標(biāo)不變),然后把縱坐標(biāo)伸長為原來的倍(橫坐標(biāo)不變),再向上平移1個單位即可。

 

查看答案和解析>>

同步練習(xí)冊答案