若△ABC的內(nèi)角A,B,C所對(duì)的邊a,b,c滿足(a+b)2-c2=ab,則C等于( 。
分析:由條件利用余弦定理可得 cosC=-
1
2
,可得 C=
3
解答:解:∵△ABC的內(nèi)角A,B,C所對(duì)的邊a,b,c滿足(a+b)2-c2=ab,
由余弦定理可得 c2=a2+b2-2ab•cosC,
化簡可得 cosC=-
1
2
,∴C=
3
,
故選C.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寧城縣模擬)若△ABC的內(nèi)角A,B,C所對(duì)的邊a,b,c滿足(a+b)2-c2=4,且C=60°,則a+b的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A、B、C滿足sinA:sinB:sinC=2:3:3,則cosB( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c滿足(a+b)2-c2=4,且C=60°,則a+b的最小值為
4
3
3
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A滿足sin2A=-
2
3
,則cosA-sinA=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的內(nèi)角A、B、C滿足6sinA=4sinB=3sinC,則cosB=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案