過(guò)橢圓數(shù)學(xué)公式(a>b>0)的左焦點(diǎn)F1作直線交橢圓于點(diǎn)A,B.F2為右焦點(diǎn),則△ABF2的周長(zhǎng)為  


  1. A.
    2a
  2. B.
    4a
  3. C.
    2b
  4. D.
    4b
B
分析:先由橢圓方程求得長(zhǎng)半軸,而△ABF2的周長(zhǎng)為AB+BF2+AF2,由橢圓的定義求解即可.
解答:∵橢圓
根據(jù)橢圓的定義
AF1+AF2=2a
∴BF1+BF2=2a
∵AF1+BF1=AB
∴△ABF2的周長(zhǎng)為4a;
故選B
點(diǎn)評(píng):本題主要考查橢圓的定義的應(yīng)用,應(yīng)用的定義的基本特征,是與焦點(diǎn)有關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)橢圓=1(a>b>0)的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點(diǎn)M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點(diǎn)M為該橢圓的“左特征點(diǎn)”,那么“左特征點(diǎn)”M一定是(    )

A.橢圓左準(zhǔn)線與x軸的交點(diǎn)                     B.坐標(biāo)原點(diǎn)

C.橢圓右準(zhǔn)線與x軸的交點(diǎn)                     D.右焦點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

過(guò)橢圓+=1(a>b>0)的焦點(diǎn)垂直于x軸的弦長(zhǎng)為,則雙曲線-=1的離心率e的值是(  )

(A) (B)

(C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆甘肅武威六中高二12月學(xué)段檢測(cè)文科數(shù)學(xué)試題(解析版) 題型:選擇題

已知AB是過(guò)橢圓(a>b>0)的左焦點(diǎn)F1的弦,則⊿ABF2的周長(zhǎng)是(     )

A.a(chǎn)         B.2a           C.3ª          D.4a

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年安徽省皖中地區(qū)示范高中高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若過(guò)橢圓(a>b>0)的焦點(diǎn)且垂直于x軸的直線被橢圓截得的線段長(zhǎng)為,則該橢圓的離心率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市一模試卷及高頻考點(diǎn)透析:推理與證明 幾何證明選講(解析版) 題型:解答題

已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過(guò)直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)在圓中有如下結(jié)論:“過(guò)圓x2+y2=r2上一點(diǎn)P(x,y)處的切線方程為:xx+yy=r2”.由上述結(jié)論類(lèi)比得到:“過(guò)橢圓(a>b>0),上一點(diǎn)P(x,y)處的切線方程”(只寫(xiě)類(lèi)比結(jié)論,不必證明).
(2)利用(1)中的結(jié)論證明直線AB恒過(guò)定點(diǎn)();
(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案