A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{\sqrt{5}}{4}$ | D. | $\frac{5}{4}$ |
分析 首先找到異面直線AB與CC1所成的角(如∠A1AB);而欲求其余弦值可考慮余弦定理,則只要表示出A1B的長(zhǎng)度即可;不妨設(shè)三棱柱ABC-A1B1C1的側(cè)棱與底面邊長(zhǎng)為1,利用勾股定理即可求之.
解答 解:設(shè)BC的中點(diǎn)為D,連接A1D、AD、A1B,易知θ=∠A1AB即為異面直線AB與CC1所成的角;
并設(shè)三棱柱ABC-A1B1C1的側(cè)棱與底面邊長(zhǎng)為1,
則|AD|=$\frac{\sqrt{3}}{2}$,|A1D|=$\frac{1}{2}$,|A1B|=$\frac{\sqrt{2}}{2}$,
由余弦定理,得cosθ=$\frac{1+1-\frac{1}{2}}{2}$=$\frac{3}{4}$.
故選B.
點(diǎn)評(píng) 本題主要考查異面直線的夾角與余弦定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1≤x<0} | D. | {x<-3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [-1,1) | C. | (-1,1] | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1或-1 | B. | 0或1或-1 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y3>y1>y2 | B. | y2>y1>y3 | C. | y1>y2>y3 | D. | y1>y3>y2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com