已知f(x)的定義域?yàn)椋?,+∞),且滿足f(4)=1,對(duì)任意x1,x2∈(0,+∞)都有f(x1?x2)=f(x1)+f(x2),當(dāng)x∈(0,1)時(shí),f(x)<0。
(1)求f(1);
(2)證明f(x)在(0,+∞)上是增函數(shù);
(3)解不等式f(3x+1)+f(2x-6)≤3。
解:(1)令,則f(1)=0;
(2)設(shè),且,
,
,
,
又當(dāng)x∈(0,1)時(shí),f(x)<0,
,
∴f(x)在(0,+∞)上是增函數(shù)。
(3)令,則;
,則,
,
可得,
解得:,
∴不等式的解集為(3,5]。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)閇-1,2),則f(|x|)的定義域?yàn)椋ā 。?/div>
A、[-1,2)B、[-1,1]C、(-2,2)D、[-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域是[0,1],且f(x+m)+f(x-m)的定義域是∅,則正數(shù)m的取值范圍是
m>
1
2
m>
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)閧x∈R|x≠0},且f(x)是奇函數(shù),當(dāng)x>0時(shí)f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0時(shí)的表達(dá)式;
(2)求f(x)在x<0時(shí)的表達(dá)式;
(3)若關(guān)于x的方程f(x)=ax(a∈R)有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)镽+,且f(x+y)=f(x)+f(y)對(duì)一切正實(shí)數(shù)x,y都成立,若f(8)=4,則f(2)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)的定義域?yàn)閇0,1],求函數(shù)y=f(x+a)+f(x-a)(0<a<
12
)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案