(本小題滿分13分)
橢圓的離心率為分別是左、右焦點,過F1的直線與圓相切,且與橢圓E交于A、B兩點。
(1)當時,求橢圓E的方程;
(2)求弦AB中點的軌跡方程。

解:由橢圓E:)的離心率為,可設橢圓E:
根據(jù)已知設切線AB為:,
(Ⅰ)圓的圓心到直線的距離為

∴切線AB為:,
聯(lián)立方程: ,
,
∴橢圓E的方程為:!9分
(Ⅱ)由(Ⅰ)得,AB的中點
故弦AB的中點軌跡方程為。………13分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知橢圓的左右焦點分別為,短軸兩個端點為、,且四邊形是邊長為2的正方形。
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點,動點滿足,連接,交橢圓于點;證明:為定值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線C:-y2=1的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點P、Q.
(1)若直線m與x軸正半軸的交點為T,且·=1,求點T的坐標;
(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(3)過點F(1,0)作直線l與(2)中的軌跡E交于不同的兩點A、B,設=λ·,若λ∈[-2,-1],求||(T為(1)中的點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C的方程C:y2 ="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線
OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的一個頂點為A(0,-1),焦點在x軸上,若右焦點到直線的距離為3。
(1)求橢圓的方程;
(2)設直線與橢圓相交于不同的兩點M,N,當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

求過點,且與橢圓有相同焦點的橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若曲線 (為參數(shù)) 與曲線相交于,兩點,則的值為(     ).

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知一隧道的截面是一個半橢圓面(如圖所示),要保證車輛正常通行,車頂離隧道頂部至少要有米的距離,現(xiàn)有一貨車,車寬米,車高米.
(1)若此隧道為單向通行,經測量隧道的跨度是米,則應如何設計隧道才能保證此貨車正常通行?
(2)圓可以看作是長軸短軸相等的特殊橢圓,類比圓面積公式,
請你推測橢圓的面積公式.并問,當隧道為雙向通行(車道間的距離忽略不記)時,要使此貨車安全通過,應如何設計隧道,才會使同等隧道長度下開鑿的土方量最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線  
(1)求以為中點的弦所在的直線的方程
(2)求過的弦的中點的軌跡方程

查看答案和解析>>

同步練習冊答案