.
(本小題滿分12分)
如圖,四邊形ABCD為正方形,PD
平面ABCD,PD=AD=2。
(1)求PC與平面PBD所成的角;
(2)在線段PB上是否存在一點E,使得
平面ADE?并說明理由。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分13分)
如圖,在三棱
柱
中,已知
,
側(cè)面
(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱
(不包含端點
上確定一點
的位置,使得
(要求說明理由).
(3)在(2)的條件下,若
,求二面角
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
將兩塊三
角板按圖甲方式拼好,其中
,
,
,AC = 2,現(xiàn)將三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如圖乙.
(I)求證:BC ⊥AD;
(II)求證
:O為線段AB中點;
(III)求二面角D-AC-B的大小的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
的三個頂點均在球O的球面上,且AB=AC=1,
,直線OA與平面ABC所成的角的正弦值為
,則球面上B、C兩點間的球面距離為
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(8分)
如圖,在四面體
中,
,點
分別是
的中點.求證:
(1)直線
面
;
(2)平面
面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
((本小題滿分12分)
如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a, DC=a,F(xiàn)、G分別為EB和AB的中點.
(1)求證:FD∥平面ABC;
(2)求證:AF⊥BD;
(3) 求二面角B—FC—G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(8分)
已知四邊形
是空間四邊形,
分別是邊
的中點,求證:四邊形
是平行四邊形。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
分別是平面
的法向量,則平面
的位置關(guān)系是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(文)(本小題8分)
如圖,在四棱錐
中,
平面
,
,
,
,
(1)求證:
;
(2)求點
到平面
的距離
證明:(1)
平面
,
又
平面
(4分)
(2)設(shè)點
到平面
的距離為
,
,
,
求得
即點
到平面
的距離為
(8分)
(其它方法可參照上述評分標(biāo)準(zhǔn)給分)
查看答案和解析>>