【題目】如圖,在四棱錐中,,,,,為上的動點.
(Ⅰ)當為的中點時,在棱上是否存在點,使得?說明理由;
(Ⅱ)的面積最小時,求三棱錐的體積.
【答案】(Ⅰ)見解析.
(Ⅱ) .
【解析】
(Ⅰ)當N為PB中點時,MN∥平面PDA.
取PB的中點N,連接MN,由M,N分別為PC,PB中點,可得MN∥BC,又BC∥AD,得MN∥AD,再由直線與平面平行的判定對立即可證明MN∥平面PDA;
(Ⅱ)由PD⊥平面ABCD,DB平面ABCD,知PD⊥BD,又BD⊥CD,CD∩PD=D,得BD⊥平面PCD,又MD平面PDC,可得BD⊥MD,進一步得到△DBM為直角三角形,當MD⊥PC時△BDM的面積最小,然后利用等積法即可求出三棱錐M﹣BCD的體積.
(Ⅰ)當N為PB中點時,MN∥平面PDA.
證明如下:取PB的中點N,連接MN,
∵M,N分別為PC,PB中點,
∴MN∥BC,
又BC∥AD,
∴MN∥AD,
又DA平面PDA,MN平面PDA,
∴MN∥平面PDA;
(Ⅱ)由PD⊥平面ABCD,DB平面ABCD,知PD⊥BD,
又BD⊥CD,CD∩PD=D,
∴BD⊥平面PCD,
又MD平面PDC,
∴BD⊥MD,
∴△DBM為直角三角形.
當MD⊥PC時△BDM的面積最。
在底面直角梯形ABCD中,
由∠ABC=∠BAD=90°,AD=AB=BC=1,得CD=,
∴BD=.
在Rt△PDC中,由PD=,CD=,可得PC=,MD=.
則CM=,
∴S△MCD=.
∴==.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線上,直線的方程為。
(1)求圓的方程;
(2)證明:直線與圓恒相交;
(3)求直線被圓截得的弦長的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】同時拋擲兩枚骰子,并記下二者向上的點數(shù),求:
二者點數(shù)相同的概率;
兩數(shù)之積為奇數(shù)的概率;
二者的數(shù)字之和不超過5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(原創(chuàng),較難)橢圓的左右焦點分別為,與y軸正半軸交于點B,若為等腰直角三角形,且直線被圓所截得的弦長為2.
(1)求橢圓的方程;(2)直線l與橢圓交于點A、C,線段AC的中點為M,射線MO與橢圓交于點P,點O為重心,探求面積是否為定值,若是求出這個值,若不是求的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對某食品廠生產(chǎn)甲、乙兩種食品進行了檢測調(diào)研,檢測某種有害微量元素的含量,隨機在兩種食品中各抽取了10個批次的食品,每個批次各隨機地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).
規(guī)定:當食品中的有害微量元素的含量在時為一等品,在為二等品,20以上為劣質(zhì)品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個數(shù)據(jù),再分別從這5個數(shù)據(jù)中各選取2個,求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;
(2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設這兩件食品給該廠帶來的盈利為,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問50名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表,由得參照附表,得到的正確結(jié)論是( )
愛好 | 不愛好 | 合計 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
A.有99.5%以上的把握認為“愛好該項運動與性別有關(guān)”
B.有99.5%以上的把握認為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平頂山市公安局交警支隊依據(jù)《中華人民共和國道路交通安全法》第條規(guī)定:所有主干道路凡機動車途經(jīng)十字口或斑馬線,無論轉(zhuǎn)彎或者直行,遇有行人過馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設備所抓拍的個月內(nèi),機動車駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):
月份 | |||||
違章駕駛員人數(shù) |
(Ⅰ)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;
(Ⅱ)預測該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com