化簡(jiǎn): sin(540°+5α)sin(630°-3α)-cos(1980°+5α)cos(810°+3α)為

[  ]

A.sin2α  B.sin8α  C.cos2α  D.cos8α

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:f(a)=
sin2(π-a)•cos(2π-a)•tan(-π+a)
sin(-π+a)tan(3π-a)

(1)化簡(jiǎn)f(a);
(2)若a=
5
4
π,求f(a)的值;
(3)若f(a)=
1
8
,且
π
4
<a<
π
2
,求cosa-sina的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:某同學(xué)求解sin18°的值其過(guò)程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開(kāi)得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重難點(diǎn)手冊(cè) 高中數(shù)學(xué)·必修4(配人教A版新課標(biāo)) 人教A版新課標(biāo) 題型:022

化簡(jiǎn):sin(36°+α)cos(54°-α)+cos(36°+α)sin(54°-α)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:f(a)=
sin2(π-a)•cos(2π-a)•tan(-π+a)
sin(-π+a)tan(3π-a)
,
(1)化簡(jiǎn)f(a);
(2)若a=
5
4
π,求f(a)的值;
(3)若f(a)=
1
8
,且
π
4
<a<
π
2
,求cosa-sina的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

閱讀材料:某同學(xué)求解sin18°的值其過(guò)程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開(kāi)得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡(jiǎn),得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對(duì)任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案