【題目】如圖所示,在三棱柱中,為等邊三角形,,,平面,是線段上靠近的三等分點(diǎn).
(1)求證:;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)由,故,所以四邊形為菱形,再通過,證得,所以四邊形為正方形,得到.
(2)根據(jù)(1)的論證,建立空間直角坐標(biāo),設(shè)平面的法向量為,由求得,再由,利用線面角的向量法公式求解.
(1)因?yàn)?/span>,故,
所以四邊形為菱形,
而平面,故.
因?yàn)?/span>,故,
故,即四邊形為正方形,故.
(2)依題意,.在正方形中,,
故以為原點(diǎn),所在直線分別為、、軸,
建立如圖所示的空間直角坐標(biāo)系;
如圖所示:
不紡設(shè),
則,
又因?yàn)?/span>,所以.
所以.
設(shè)平面的法向量為,
則,
即,
令,則.于是.
又因?yàn)?/span>,
設(shè)直線與平面所成角為,
則,
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)是函數(shù)的極值點(diǎn),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,,若,,使不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為準(zhǔn)確把握市場規(guī)律,某公司對(duì)其所屬商品售價(jià)進(jìn)行市場調(diào)查和模型分析,發(fā)現(xiàn)該商品一年內(nèi)每件的售價(jià)按月近似呈的模型波動(dòng)(為月份),已知3月份每件售價(jià)達(dá)到最高90元,直到7月份每件售價(jià)變?yōu)樽畹?/span>50元.則根據(jù)模型可知在10月份每件售價(jià)約為_____.(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)若是函數(shù)的兩個(gè)不同的零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】棉花的纖維長度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長度不低于300的為“長纖維”,其余為“短纖維”)
纖維長度 | |||||
甲地(根數(shù)) | 3 | 4 | 4 | 5 | 4 |
乙地(根數(shù)) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.025的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.
甲地 | 乙地 | 總計(jì) | |
長纖維 | |||
短纖維 | |||
總計(jì) |
附:(1);
(2)臨界值表;
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現(xiàn)從上述40根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)為“可等域函數(shù)”,區(qū)間為函數(shù)的一個(gè)“可等域區(qū)間”.給出下列4個(gè)函數(shù):
①;②; ③; ④.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線與拋物線交于兩點(diǎn).
(Ⅰ)若,求以為直徑的圓被軸所截得的弦長;
(Ⅱ)分別過點(diǎn)作拋物線的切線,兩條切線交于點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過原點(diǎn)且關(guān)于軸對(duì)稱的兩條直線與分別交曲線于、和、,且點(diǎn)在第一象限,當(dāng)四邊形的周長最大時(shí),求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種電子產(chǎn)品,每件產(chǎn)品不合格的概率均為,現(xiàn)工廠為提高產(chǎn)品聲譽(yù),要求在交付用戶前每件產(chǎn)品都通過合格檢驗(yàn),已知該工廠的檢驗(yàn)儀器一次最多可檢驗(yàn)件該產(chǎn)品,且每 件產(chǎn)品檢驗(yàn)合格與否相互獨(dú)立.若每件產(chǎn)品均檢驗(yàn)一次,所需檢驗(yàn)費(fèi)用較多,該工廠提出以下檢 驗(yàn)方案:將產(chǎn)品每個(gè)一組進(jìn)行分組檢驗(yàn),如果某一組產(chǎn)品檢驗(yàn)合格,則說明該組內(nèi)產(chǎn)品均合格,若檢驗(yàn)不合格,則說明該組內(nèi)有不合格產(chǎn)品,再對(duì)該組內(nèi)每一件產(chǎn)品單獨(dú)進(jìn)行檢驗(yàn),如此,每一組產(chǎn)品只需檢驗(yàn)次或次.設(shè)該工廠生產(chǎn)件該產(chǎn)品,記每件產(chǎn)品的平均檢驗(yàn)次 數(shù)為.
(1)求的分布列及其期望;
(2)(i)試說明,當(dāng)越小時(shí),該方案越合理,即所需平均檢驗(yàn)次數(shù)越少;
(ii)當(dāng)時(shí),求使該方案最合理時(shí)的值及件該產(chǎn)品的平均檢驗(yàn)次數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com