等比數(shù)列{an}中,a2+a6=24,a3a5=64,則a4=
8
8
分析:由a3a5=64,結(jié)合等比數(shù)列的性質(zhì)求出a4=±8,經(jīng)驗(yàn)證a4=-8不合題意,則可求得a4=8.
解答:解:設(shè)等比數(shù)列{an}的公比為q,
由a3a5=64,得a42=64,∴a4=±8.
當(dāng)a4=-8時(shí),由a2+a6=24,得
-8
q2
-8q2=24
,即
1
q2
+q2=-3
,此式不成立.
∴a4=8.
故答案為:8.
點(diǎn)評:本題考查了等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的性質(zhì),是基礎(chǔ)的計(jì)算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項(xiàng)所組成的新數(shù)列的前n項(xiàng)和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于(  )

查看答案和解析>>

同步練習(xí)冊答案