【題目】已知函數(shù).

1)若曲線處切線的斜率為,判斷函數(shù)的單調(diào)性;

2)若函數(shù)有兩個零點,證明,并指出a的取值范圍.

【答案】1R上的增函數(shù);(2)證明見解析,a的取值范圍是.

【解析】

1)求出函數(shù)的導數(shù),結(jié)合題意求出的值,從而求出函數(shù)的單調(diào)區(qū)間;

2)通過討論的范圍,求出函數(shù)的單調(diào)區(qū)間,從而判斷函數(shù)零點的個數(shù),利用單調(diào)性證明不等式后,即可確定滿足條件的a的取值范圍.

1)由題

,得,

此時,由.

時,,為增函數(shù);時,,為增函數(shù),且,所以R上的增函數(shù)

2)①當時,由,

,由(1)知,R上的增函數(shù).

,

所以只有一個零點,不符合題意

,則時,,為增函數(shù);時,為減函數(shù);時,,為增函數(shù).

,故最多只有一個零點,不符合題意

時,則時,,為增函數(shù);時,,為減函數(shù);時,,為增函數(shù),得,故最多只有一個零點,不符合題意

②當時,由,

,為減函數(shù),由,為增函數(shù),

.

時,,時,,

所以當時,始終有兩個零點,,

不妨令,,構(gòu)造函數(shù)

所以,

由于時,,又,則恒成立,

所以的減函數(shù),

,

,故有.

,的兩個零點,則,

所以.結(jié)合的單調(diào)性得

所以,所求a的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓,拋物線,點A是橢圓與拋物線的交點,過點A的直線l交橢圓于點B,交拋物線MBM不同于A).

(Ⅰ)若,求拋物線的焦點坐標;

(Ⅱ)若存在不過原點的直線l使M為線段AB的中點,求p的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線E)與圓O相交于A,B兩點,且.過劣弧上的動點作圓O的切線交拋物線ECD兩點,分別以C,D為切點作拋物線E的切線,,相交于點M.

1)求拋物線E的方程;

2)求點M到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)當時,設.求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當,時,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線

(Ⅰ)求的方程;

(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于兩點,當圓的半徑最長時,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,討論極值點的個數(shù);

2)若函數(shù)有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某學校高三年級的三個班在一學期內(nèi)的六次數(shù)學測試的平均成績y關于測試序號x的函數(shù)圖象,為了容易看出一個班級的成績變化,將離散的點用虛線連接,根據(jù)圖象,給出下列結(jié)論:

①一班成績始終高于年級平均水平,整體成績比較好;

②二班成績不夠穩(wěn)定,波動程度較大;

③三班成績雖然多次低于年級平均水平,但在穩(wěn)步提升.

其中錯誤的結(jié)論的個數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,六邊形的六個內(nèi)角均相等,,M,N分別是線段,上的動點,且滿足,現(xiàn)將折起,使得B,F重合于點G,則二面角的余弦值的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義:過橢圓上的一點(不與長軸的端點重合)與橢圓的兩個焦點確定的三角形稱為橢圓的焦點三角形;已知過橢圓上一點P(不與長軸的端點重合)的焦點三角形,且

1)求證:焦點三角形的面積為定值;

2)已知橢圓的一個焦點三角形為,;

,求點的橫坐標的范圍;

,過點的直線軸交于點,且,記,求的值.

查看答案和解析>>

同步練習冊答案