精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=cos2x-sin2x+2
3
sinxcosx.
(1)求f(x)的最小正周期;
(2)若f(
α
3
)=
3
,且α∈(
π
3
,π),求cosα.
考點:二倍角的余弦,兩角和與差的正弦函數,三角函數的周期性及其求法
專題:三角函數的圖像與性質
分析:(1)利用倍角公式、兩角和差的正弦公式、周期公式即可得出;
(2)f(
α
3
)=
3
,可得sin(
3
+
π
6
)=
3
2
.由于α∈(
π
3
,π),可得(
3
+
π
6
)
(
18
6
)
.可得
3
+
π
6
=
3
,解得α即可.
解答: 解:(1)函數f(x)=cos2x-sin2x+2
3
sinxcosx
=cos2x+
3
sin2x
=2sin(2x+
π
6
)
,
T=
2
=π.
(2)f(
α
3
)=
3
,
2sin(
3
+
π
6
)
=
3
,
sin(
3
+
π
6
)=
3
2

∵α∈(
π
3
,π),
(
3
+
π
6
)
(
18
,
6
)

3
+
π
6
=
3
,解得α=
4

∴cosα=
2
2
點評:本題考查了倍角公式、兩角和差的正弦公式、三角函數的單調性,考查了推理能力與計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知棱長為2
3
的正四面體A-BCD,面ACD沿CD旋轉至面PCD.
(1)二面角A-CD-P的余弦值為何值時,AP∥平面BCD;
(2)在第一問的前提下,求直線AB與平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列函數滿足性質:“f(-x)=f(x)”的函數是(  )
A、f(x)=x-1
B、f(x)=-x2+x
C、f(x)=2x-2-x
D、f(x)=2x+2-x

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定點F1(-1,0),F2(1,0),曲線E是以原點為頂點、F2為焦點且離心率為1的圓錐曲線,橢圓C與曲線E的交點為A,B,且點A到點F1,F2的距離之和為4.
(1)求橢圓C和曲線E的方程;
(2)在橢圓C和曲線E上是否存在這樣的點P,使得△PAB的面積為
8
6
9
?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由;
(3)若平行于x軸的直線分別與橢圓C和曲線E交于M(x1,y1),N(x2,y2)兩點,且x1>x2,求△MNF2的周長t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x+3
x+1
,g(x)=|x-
a
x
|.
(1)a=-2時,求函數g(x)的最小值;
(2)若對?t∈[1,3],在區(qū)間[1,3]總存在兩個不同的x,使得g(x)=f(t),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

記等差數列{an}得前n項和為Sn,利用倒序相加法的求和辦法,可將Sn表示成首項a1,末項an與項數的一個關系式,即Sn=
(a1+an)n
2
;類似地,記等比數列{bn}的前n項積為Tn,bn>0(n∈N*),類比等差數列的求和方法,可將Tn表示為首項b1,末項bn與項數的一個關系式,即公式Tn=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
lnx
x
(其中e為自然對數的底數)
(1)求函數f(x)的極值;
(2)設函數g(x)=x2f(x)-mx,其中m∈R,求g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={0,1,2},B={3,4,5},從A中任意取出一個元素a,從B 中任意取出一個元素b,
(1)求點(a,b)落在圓(x-1)2+y2=20內的概率.
(2)求點(a,b)落在平面區(qū)域
x≥0
x+y-6≤0
y≥0
內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}為等差數列,{bn}為等比數列,且滿足:a1000+a1013=π,b1b14=-2,則tan
a1+a2012
1-b7b8
=(  )
A、1
B、-1
C、
3
3
D、
3

查看答案和解析>>

同步練習冊答案