解:(Ⅰ)設(shè)點P、Q的極坐標(biāo)分別為(ρ0,θ)、(ρ,θ),
則 ρ= ρ0= ×4(cosθ+sinθ)=2(cosθ+sinθ),
點Q軌跡C2的極坐標(biāo)方程為ρ=2(cosθ+sinθ),
兩邊同乘以ρ,得ρ2=2(ρcosθ+ρsinθ),
C2的直角坐標(biāo)方程為x2+y2=2x+2y,
即(x﹣1)2+(y﹣1)2=2.
(Ⅱ)將l的代入曲線C2的直角坐標(biāo)方程,
得(tcosφ+1)2+(tsinφ﹣1)2=2,
即t2+2(cosφ﹣sinφ)t=0,
t1=0,t2=sinφ﹣cosφ,
由直線l與曲線C2有且只有一個公共點,
得sinφ﹣cosφ=0,
因為0≤φ<π,
所以φ= .
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三二模理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.
(Ⅰ)求的直角坐標(biāo)方程;
(Ⅱ)直線(為參數(shù))與曲線C交于,兩點,與軸交于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三二模文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)直線(為參數(shù))與曲線C交于,兩點,與軸交于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省齊齊哈爾市高三二模文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)直線(為參數(shù))與曲線C交于,兩點,與軸交于,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com