已知圓心為C的圓,滿足下列條件:圓心C位于x軸正半軸上,與直線3x-4y+7=0相切,且被軸截得的弦長為,圓C的面積小于13.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點M(0,3)的直線l與圓C交于不同的兩點A,B,以O(shè)A,OB為鄰邊作平行四邊形OADB.是否存在這樣的直線l,使得直線OD與MC恰好平行?如果存在,求出l的方程;如果不存在,請說明理由.

(I)圓C的標(biāo)準(zhǔn)方程為:(x-1)2+y2=4;(Ⅱ)不存在這樣的直線l.

解析試題分析:(I)用待定系數(shù)法即可求得圓C的標(biāo)準(zhǔn)方程;(Ⅱ)首先考慮斜率不存在的情況.當(dāng)斜率存在時,設(shè)直線l:y=kx+3,A(x1,y1),B(x2,y2).l與圓C相交于不同的兩點,那么Δ>0.由題設(shè)及韋達(dá)定理可得k與x1、x2之間關(guān)系式,進而求出k的值.若k的值滿足Δ>0,則存在;若k的值不滿足Δ>0,則不存在.
試題解析:(I)設(shè)圓C:(x-a)2+y2=R2(a>0),由題意知
 解得a=1或a=,                  3分
又∵S=πR2<13,
∴a=1,
∴圓C的標(biāo)準(zhǔn)方程為:(x-1)2+y2=4.                  6分
(Ⅱ)當(dāng)斜率不存在時,直線l為:x=0不滿足題意.
當(dāng)斜率存在時,設(shè)直線l:y=kx+3,A(x1,y1),B(x2,y2),
又∵l與圓C相交于不同的兩點,
聯(lián)立消去y得:(1+k2)x2+(6k-2)x+6=0,        9分
∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,
解得
x1+x2=,y1+ y2=k(x1+x2)+6=,
,,
假設(shè),則,
,
解得,假設(shè)不成立.
∴不存在這樣的直線l.                   13分
考點:1、圓的方程;2、直線與圓的位置關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,曲線y=x2-2x-3與坐標(biāo)軸的交點都在圓C上.
(1)求圓C的方程;
(2)若直線x+y+a=0與圓C交于A,B兩點,且AB=2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓經(jīng)過點
(Ⅰ)當(dāng)圓面積最小時,求圓的方程;
(Ⅱ)若圓的圓心在直線上,求圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的圓心在直線上,且與軸交于兩點,.
(1)求圓的方程;
(2)求過點的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的三個頂點,,,其外接圓為
(1)若直線過點,且被截得的弦長為2,求直線的方程;
(2)對于線段上的任意一點,若在以為圓心的圓上都存在不同的兩點,使得點是線段的中點,求的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為的圓位于軸的右側(cè),且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點為,試探究在圓上是否存在點,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點M(3,1),直線與圓。
(1)求過點M的圓的切線方程;
(2)若直線與圓相切,求a的值;
(3)若直線與圓相交與A,B兩點,且弦AB的長為,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓A過點,且與圓B:關(guān)于直線對稱.
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點,求的最小值。
(3)過平面上一點向圓A和圓B各引一條切線,切點分別為C、D,設(shè),求證:平面上存在一定點M使得Q到M的距離為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,己知圓P在x軸上截得線段長為2,在軸上截得線段長為.
(Ⅰ)求圓心P的軌跡方程;
(Ⅱ)若P點到直線y=x的距離為,求圓P的方程.

查看答案和解析>>

同步練習(xí)冊答案