三人獨(dú)立破譯同一密碼,已知三人各自破譯出密碼的概率分別為,且他們是否譯出密碼互不影響。
(1)求恰有兩人破譯出密碼的概率;
(2)“密碼被破譯”與“密碼未被破譯”的概率那個(gè)大?

(1)(2)密碼被破譯的概率比密碼未被破譯的概率大

解析試題分析:(1) 三人獨(dú)立破譯同一密碼,已知三人各自破譯出密碼的概率分別為,,那么恰有兩人破譯出密碼的概率要分為三種情況得到,即為
(2)設(shè)“密碼被破譯”為事件,“密碼未被破譯”為事件,則
,且相互獨(dú)立,那么

,故
故密碼被破譯的概率比密碼未被破譯的概率大
考點(diǎn):互斥事件和對(duì)立事件概率
點(diǎn)評(píng):主要是考查了互斥事件的概率和對(duì)立事件概率的求解,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

從集合中任取三個(gè)元素構(gòu)成三元有序數(shù)組,規(guī)定
(1)從所有三元有序數(shù)組中任選一個(gè),求它的所有元素之和等于10的概率;
(2)定義三元有序數(shù)組的“項(xiàng)標(biāo)距離”為,(其中,從所有三元有序數(shù)組中任選一個(gè),求它的“項(xiàng)標(biāo)距離”為偶數(shù)的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某電視臺(tái)綜藝頻道組織的闖關(guān)游戲,游戲規(guī)定前兩關(guān)至少過一關(guān)才有資格闖第三關(guān),闖關(guān)者闖第一關(guān)成功得3分,闖第二關(guān)成功得3分,闖第三關(guān)成功得4分.現(xiàn)有一位參加游戲者單獨(dú)面第一關(guān)、第二關(guān)、第三關(guān)成功的概率分別為,,記該參加者闖三關(guān)所得總分為ζ.
(1)求該參加者有資格闖第三關(guān)的概率;
(2)求ζ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩校各有3名教師報(bào)名支教,其中甲校2男1女,乙校1男2女.
(1)若從報(bào)名的6名教師中任選2名,寫出所有可能的結(jié)果,并求選出的2名教師來自同一學(xué)校的概率.
(2)若從甲校和乙校報(bào)名的教師中各任選1名,寫出所有可能的結(jié)果,并求選出的2名教師性別相同的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖是一個(gè)從的”闖關(guān)”游戲.

規(guī)則規(guī)定:每過一關(guān)前都要拋擲一個(gè)在各面上分別標(biāo)有1,2,3,4的均勻的正四面體.在過第n(n=1,2,3)關(guān)時(shí),需要拋擲n次正四面體,如果這n次面朝下的數(shù)字之和大于則闖關(guān)成功.
(1)求闖第一關(guān)成功的概率;
(2)記闖關(guān)成功的關(guān)數(shù)為隨機(jī)變量X,求X的分布列和期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某班同學(xué)利用寒假在5個(gè)居民小區(qū)內(nèi)選擇兩個(gè)小區(qū)逐戶進(jìn)行一次“低碳生活習(xí)慣”的調(diào)查,以計(jì)算每戶的碳月排放量。若月排放量符合低碳標(biāo)準(zhǔn)的稱為“低碳族”,否則稱為“非低碳族”。若小區(qū)內(nèi)有至少75%的住戶屬于“低碳族”,則稱這個(gè)小區(qū)為“低碳小區(qū)”,否則稱為“非低碳小區(qū)”。已知備選的5個(gè)居民小區(qū)中有三個(gè)非低碳小區(qū),兩個(gè)低碳小區(qū)。
(I)求所選的兩個(gè)小區(qū)恰有一個(gè)為“非低碳小區(qū)”的概率;
(Ⅱ)假定選擇的“非低碳小區(qū)”為小區(qū),調(diào)查顯示其“低碳族”的比例為,數(shù)據(jù)如圖1所示,經(jīng)過同學(xué)們的大力宣傳,三個(gè)月后,又進(jìn)行了一次調(diào)查,數(shù)據(jù)如圖2所示,問這時(shí)小區(qū)是否達(dá)到“低碳小區(qū)”的標(biāo)準(zhǔn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商店試銷某種商品,獲得如下數(shù)據(jù):

日銷售量(件)
0
1
2
3
概率
0.05
0.25
0.45
0.25
試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變),設(shè)某天開始營(yíng)業(yè)時(shí)有該商品3件,當(dāng)天營(yíng)業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存貨少于2件,則當(dāng)天進(jìn)貨再補(bǔ)充3件,否則不進(jìn)貨。
(Ⅰ)求當(dāng)天商品不進(jìn)貨的概率;
(Ⅱ)記X為第二天開始營(yíng)業(yè)時(shí)該商品的件數(shù),求X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)進(jìn)入某商場(chǎng)的每一位顧客購買甲種商品的概率0.5,購買乙種商品的概率為0.6,且購買甲種商品與購買乙種商品相互獨(dú)立,各顧客之間購買商品也是相互獨(dú)立的.
(1)求進(jìn)入商場(chǎng)的一位顧客購買甲、乙兩種商品中的一種的概率;
(2) 求進(jìn)入商場(chǎng)的一位顧客至少購買甲、乙兩種商品中的一種的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)編號(hào)依次為1,2,3,4,5.現(xiàn)從一批產(chǎn)品中隨機(jī)抽取20件,對(duì)其等級(jí)編號(hào)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:

等級(jí)
 
1
 
2
 
3
 
4
 
5
 
頻率
 
a
 
0.2
 
0.45
 
b
 
c
 
(1)若所抽取的20件產(chǎn)品中,等級(jí)編號(hào)為4的恰有3件,等級(jí)編號(hào)為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級(jí)編號(hào)為4的3件產(chǎn)品記為xl,x2,x3,等級(jí)編號(hào)為5的2件產(chǎn)品記為yl ,y2,現(xiàn)從xl,x2,x3,yl,y2這5件產(chǎn)品中任取兩件(假定每件產(chǎn)品被取出的可能性相同),寫出所有可能的結(jié)果,并求這兩件品的級(jí)編號(hào)恰好相同的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案