(12分)如圖一,平面四邊形關(guān)于直線對(duì)稱,.把沿折起(如圖二),使二面角的余弦值等于.對(duì)于圖二,
(Ⅰ)求
(Ⅱ)證明:平面;
(Ⅲ)求直線與平面所成角的正弦值.

解:(Ⅰ)取的中點(diǎn),連接,
,得:                                      
就是二面角的平面角,……………………2分
中,
    ………………………………………4分                                                                                                                    
(Ⅱ)由

,  又BC∩CD=C平面.………………8分
(Ⅲ)方法一:由(Ⅰ)知平面平面
∴平面平面平面ACE∩平面,
,則平面,
就是與平面所成的角.…12分
方法二:設(shè)點(diǎn)到平面的距離為,
             
 于是與平面所成角的正弦為  
方法三:以所在直線分別為軸,軸和軸建立空間直角坐標(biāo)系, 則
設(shè)平面的法向量為,則,
,則, 于是與平面所成角的正弦即
. 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,.點(diǎn)D是AB的中點(diǎn).

(1)求證:AC⊥BC1;
(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知四面體中,,平面平面,分別為棱的中點(diǎn)。

(1)求證:平面;
(2)求證:;
(3)若內(nèi)的點(diǎn)滿足∥平面,設(shè)點(diǎn)構(gòu)成集合,試描述點(diǎn)集的位置(不必說(shuō)明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
如圖的多面體是底面為平行四邊形的直四棱柱ABCD—,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°。AB=2AD=2.∠BAD=60。.

(I)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.                                                              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中底面,的中點(diǎn).
(1)求證://平面;
(2)若平面,
①求異面直線所成角的余弦值;
②求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)
如圖,正方形所在平面與所在平面垂直,,,中點(diǎn)為.
(1)求證:
(2)求直線與平面所成角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知球O的半徑為2,兩個(gè)平面分別截球面得到兩個(gè)圓⊙O1與⊙O2,若
OO1=OO2=,∠O1OO2=60°,則⊙O1與⊙O2的公共弦長(zhǎng)為               

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,,、F分別為DB、CB的中點(diǎn),

(1)證明:AE⊥BC;   
(2)求直線PF與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用一付直角三角板拼成一直二面角A—BD—C,若其中給定 AB="AD" =2,,

(Ⅰ)求三棱錐A-BCD的體積;
(Ⅱ)求點(diǎn)A到BC的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案