已知雙曲線的兩焦點(diǎn)為,P為動(dòng)點(diǎn),若,
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E方程;
(Ⅱ)若,設(shè)直線l過(guò)點(diǎn)M,且與軌跡E交于R、Q兩點(diǎn),直線交于點(diǎn)S,試問(wèn):當(dāng)直線l在變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請(qǐng)寫出這條定直線方程,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.
解:(Ⅰ)由題意知:,又∵,
∴動(dòng)點(diǎn)必在以為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓,
∴a=2,
又∵,
∴橢圓C的方程為
(Ⅱ)由題意,可設(shè)直線l為:
取m=0,得,直線的方程是
直線的方程是,交點(diǎn)為
,由對(duì)稱性可知交點(diǎn)為,若點(diǎn)S在同一條直線上,
則直線只能為
②以下證明對(duì)于任意的m,直線與直線的交點(diǎn)S均在直線上.
事實(shí)上,由,得,即,記,

設(shè)交于點(diǎn),得,
設(shè)交于點(diǎn),由,得,
==,
,即重合,
這說(shuō)明,當(dāng)m變化時(shí),點(diǎn)S恒在定直線上。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市閔行區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知雙曲線的兩焦點(diǎn)為F、F',若該雙曲線與拋物線y2=8x有一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)
交點(diǎn)為P,|PF|=5,則∠FPF'的大小為    (結(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆浙江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的兩焦點(diǎn)為,過(guò)軸的垂線交雙曲線于兩點(diǎn),若內(nèi)切圓的半徑為,則此雙曲線的離心率為(  )

A.             B.           C.             D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省五市高三第二次聯(lián)考理科數(shù)學(xué) 題型:選擇題

已知雙曲線的兩焦點(diǎn)為F1、F2,點(diǎn)P在雙曲線上,∠F1PF2的平分線分線段F1F2的比為5 :1,則雙曲線離心率的取值范圍是

A.(1,]      B.(1,)       C.(2, ]         D.(,2]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年云南省高二上學(xué)期期末數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)

已知雙曲線的兩焦點(diǎn)為,,直線是雙曲線的一條準(zhǔn)線,

(Ⅰ)求該雙曲線的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)在雙曲線右支上,且,求的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的兩焦點(diǎn)為,為動(dòng)點(diǎn),若

(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;

(Ⅱ)若,設(shè)直線過(guò)點(diǎn),且與軌跡交于、兩點(diǎn),直線交于點(diǎn).試問(wèn):當(dāng)直線在變化時(shí),點(diǎn)是否恒在一條定直線上?若是,請(qǐng)寫出這條定直線方程,并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案