A. | 25π | B. | 50π | C. | 100π | D. | 200π |
分析 如圖所示,連接AC,BD相交于點O1.取SC的中點,連接OO1.利用三角形的中位線定理可得OO1∥SA.由于SA⊥底面ABCD,可得OO1⊥底面ABCD.可得點O是四棱錐S-ABCD外接球的球心,SC是外接球的直徑,即可得出結(jié)論.
解答 解:如圖所示連接AC,BD相交于點O1.取SC的中點,連接OO1.
則OO1∥SA.
∵SA⊥底面ABCD,
∴OO1⊥底面ABCD.
可得點O是四棱錐S-ABCD外接球的球心.
因此SC是外接球的直徑.
∵SC=5$\sqrt{2}$,∴4R2=50,
∴四棱錐P-ABCD外接球的表面積為4πR2=50π.
故選B.
點評 本題考查了線面垂直的性質(zhì)、三角形的中位線定理、正方形的性質(zhì)、勾股定理、球的表面積,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a≤1或a≥9 | B. | a≤1或a≥9 | C. | 1≤a≤9 | D. | a≥9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{4}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com