如圖,在平面直角坐標(biāo)系xOy中,
點A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使|MA|=2|MO|,求圓心C的橫坐標(biāo)a的取值范圍.
審題路線 (1)由兩條直線解得圓心C的坐標(biāo)⇒設(shè)過點A與圓C相切的切線方程⇒由點到直線的距離求斜率⇒寫出切線方程;(2)設(shè)圓C的方程⇒設(shè)點M(x,y)⇒由|MA|=2|MO|得M的軌跡方程⇒由兩圓有公共點,列出關(guān)于a的不等式⇒解不等式可得.
解 (1)由題設(shè),圓心C是直線y=2x-4和y=x-1的交點,解得點C(3,2),于是切線的斜率必存在.
設(shè)過A(0,3)的圓C的切線方程為y=kx+3,
由題意,得=1,解得k=0或-,
故所求切線方程為y=3或3x+4y-12=0.
(2)因為圓心在直線y=2x-4上,
所以圓C的方程為(x-a)2+[y-2(a-2)]2=1.
設(shè)點M(x,y),因為|MA|=2|MO|,所以
化簡得x2+y2+2y-3=0,即x2+(y+1)2=4,
所以點M在以D(0,-1)為圓心,2為半徑的圓上.
由題意,點M(x,y)在圓C上,所以圓C與圓D有公共點,則|2-1|≤|CD|≤2+1,
即1≤≤3.整理得-8≤5a2-12a≤0.
由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.
所以點C的橫坐標(biāo)a的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)y=x2cosx的導(dǎo)數(shù)為( )
A. y′=2xcosx-x2sinx B.y′=2xcosx+x2sinx C. y′=x2cosx-2xsinx D.y′=xcosx-x2sinx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)“a=3”是“直線y=x+4與圓(x-a)2+(y-3)2=8相切”的( ).
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為( ).
A.內(nèi)切 B.相交 C.外切 D.相離
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點P是拋物線y2=4x上的動點,點P在y軸上的射影是M,點A的坐標(biāo)是(4,a),則當(dāng)|a|>4時,|PA|+|PM|的最小值是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com