分析 由函數(shù)$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,將x=2代入可得$f(\frac{1}{f(2)})$值,分類討論若f(x)=3的x值,綜合討論結(jié)果,可得答案.
解答 解:∵函數(shù)$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,
∴$f(\frac{1}{f(2)})$=f($\frac{1}{4}$)=$\frac{1}{16}$,
若x≤-1,解f(x)=x+2=3得:x=1(舍去)
若-1<x<2,解f(x)=x2=3得:x=$\sqrt{3}$,或x=-$\sqrt{3}$(舍去)
若x≥2,解f(x)=2x=3得:x=$\frac{3}{2}$(舍去)
綜上所述,若f(x)=3,則x=$\sqrt{3}$.
故答案為:$\frac{1}{16}$,$\sqrt{3}$
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,已知函數(shù)值求自變量,就是解方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-4,-2] | B. | [-4,-2] | C. | (-4,+∞) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>c>b | B. | a<b<c | C. | a<c<b | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=\sqrt{x+1}\sqrt{x-1}$,$g(x)=\sqrt{{x^2}-1}$ | B. | $f(x)=\frac{{{x^2}-1}}{x-1}$,g(x)=x+1 | ||
C. | f(x)=ln(1-x)+ln(1+x),g(x)=ln(1-x2) | D. | f(x)=lgx2,g(x)=2lgx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在$[\frac{π}{6},\frac{2π}{3}]$上是增函數(shù) | |
B. | 圖象關(guān)于直線$x=\frac{5π}{12}$對(duì)稱 | |
C. | 圖象關(guān)于點(diǎn)$(-\frac{π}{3},0)$對(duì)稱 | |
D. | 把函數(shù)f(x)的圖象沿x軸向左平移$\frac{π}{6}$個(gè)單位,所得函數(shù)圖象關(guān)于y軸對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2,5} | B. | {1} | C. | {1,2,3,5} | D. | {2,3,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | cos2α>0 | B. | tan2α>0 | C. | $cos\frac{α}{2}>0$ | D. | $tan\frac{α}{2}>0$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com