分析 由a4=a2•a5,得${a}_{4}{q}^{-1}=1$即a4=q,再結合已知條件求出等比數(shù)列的通項公式,進一步求出Tn=a1a2…an的最大值即可.
解答 解:由a4=a2•a5,得${a}_{4}{q}^{-1}=1$即a4=q.
∴3${{a}_{4}}^{2}+2{a}_{4}=1$即a4=q=$\frac{1}{3}$.
∴${a}_{n}=(\frac{1}{3})•(\frac{1}{3})^{n-4}=(\frac{1}{3})^{n-3}$.
則Tn=a1a2…an的最大值為:$(\frac{1}{3})^{-2}×(\frac{1}{3})^{-1}×(\frac{1}{3})^{0}=27$.
故答案為:27.
點評 本題考查了等比數(shù)列的通項公式,考查了分析問題的能力,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com