如圖,在,設(shè),的中點(diǎn)為,的中點(diǎn)為的中點(diǎn)為,若,則(    )

A. 1               B.               C.               D.

 

【答案】

D

【解析】

試題分析:設(shè),根據(jù)向量加法的平行四邊形法則,有,所以

考點(diǎn):本小題主要考查平面向量的加法運(yùn)算和向量加法的平行四邊形法則的應(yīng)用,考查學(xué)生對圖形的應(yīng)用能力和運(yùn)算求解能力.

點(diǎn)評:解決本小題的關(guān)鍵是用已知向量表示未知向量.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是在豎直平面內(nèi)的一個“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動.記小彈子落入第n層第m個豎直通道(從左至右)的概率為P(n,m).(已知在通道的分叉處,小彈子以相同的概率落入每個通道)
(Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表達(dá)式.(不必證明)
(Ⅱ)設(shè)小彈子落入第6層第m個豎直通道得到分?jǐn)?shù)為ξ,其中ξ=
4-m,1≤m≤3
m-3,4≤m≤6
,試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在邊長為1的正三角形ABC中,E,F(xiàn)分別是邊AB,AC上的點(diǎn),若
AE
=m
AB
,
AF
=n
AC
,m,n∈(0,1).設(shè)EF的中點(diǎn)為M,BC的中點(diǎn)為N.
(1)若A,M,N三點(diǎn)共線,求證m=n;
(2)若m+n=1,求|
MN
|
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱柱ABCD-A1B1C1D1中,DD1⊥面ABCD已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)設(shè)E是DC的中點(diǎn),求證:D1E∥平面A1BD;
(2)求二面角A1-BD-C1的余弦值.
(3)求點(diǎn)C到面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱錐S-ABCD中,AB=8
2
,SA=10,M、N、O分別是SA、SB、BD的中點(diǎn).
(1)設(shè)P是OC的中點(diǎn),證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大;
(3)在△ABC內(nèi)是否存在一點(diǎn)G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•四川)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分別是線段BC,B1C1的中點(diǎn),P是線段AD的中點(diǎn).
(I)在平面ABC內(nèi),試做出過點(diǎn)P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1;
(II)設(shè)(I)中的直線l交AB于點(diǎn)M,交AC于點(diǎn)N,求二面角A-A1M-N的余弦值.

查看答案和解析>>

同步練習(xí)冊答案