12.已知集合A={x|0<x<2},B={x|x2-1≤0},那么A∪B=( 。
A.{x|0<x≤1}B.{x|-1≤x<2}C.{x|-1≤x<0}D.{x|1≤x<2}

分析 先分別求出集合A和B,由此能求出A∪B.

解答 解:∵集合A={x|0<x<2},
B={x|x2-1≤0}={x|-1≤x≤1},
∴A∪B={-1≤x<2}.
故選:B.

點(diǎn)評(píng) 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,表示的平面區(qū)域上運(yùn)動(dòng),則z=x-y的取值范圍是( 。
A.[1,2]B.[-2,1]C.[-2,-1]D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,平面ABCD⊥平面SAB,側(cè)面SAB為等邊三角形,底面ABCD為直角梯形,AB∥CD,AB⊥BC,AB=12,CD=BC=6.
(1)求證:AB⊥DS;
(2)求平面SAD與平面SBC所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知關(guān)于x的一次函數(shù)y=mx+n,設(shè)m∈{-1,1,2},n∈{-2,2},則函數(shù)y=mx+n是增函數(shù)的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=2sin(\frac{π}{2}-x)•sinx+\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[-\frac{π}{12},\;\frac{π}{6}]$上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.手機(jī)完全充滿電量,在開機(jī)不使用的狀態(tài)下,電池靠自身消耗一直到出現(xiàn)低電量警告之間所能維持的時(shí)間稱為手機(jī)的待機(jī)時(shí)間.為了解A,B兩個(gè)不同型號(hào)手機(jī)的待機(jī)時(shí)間,現(xiàn)從某賣場(chǎng)庫(kù)存手機(jī)中隨機(jī)抽取A,B兩個(gè)型號(hào)的手機(jī)各7臺(tái),在相同條件下進(jìn)行測(cè)試,統(tǒng)計(jì)結(jié)果如下:
手機(jī)編號(hào)1234567
A型待機(jī)時(shí)間(h)120125122124124123123
B型待機(jī)時(shí)間(h)118123127120124ab
其中,a,b是正整數(shù),且a<b
(Ⅰ)該賣場(chǎng)有56臺(tái)A型手機(jī),試估計(jì)其中待機(jī)時(shí)間不少于123小時(shí)的臺(tái)數(shù);
(Ⅱ)從A型號(hào)被測(cè)試的7臺(tái)手機(jī)中隨機(jī)抽取4臺(tái),記待機(jī)時(shí)間大于123小時(shí)的臺(tái)數(shù)為X,求X 的分布列;
(Ⅲ)設(shè)A,B兩個(gè)型號(hào)被測(cè)試手機(jī)待機(jī)時(shí)間的平均值相等,當(dāng)B型號(hào)被測(cè)試手機(jī)待機(jī)時(shí)間的方差最小時(shí),寫出a,b的值(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.8名象棋選手進(jìn)行單循環(huán)賽(即每?jī)擅x手比賽一場(chǎng)).規(guī)定兩人對(duì)局勝者得2分,平局各得1分,負(fù)者得0分,并按總得分由高到低進(jìn)行排序.比賽結(jié)束后,8名選手的得分各不相同,且第二名的得分與最后四名選手得分之和相等.則第二名選手的得分是( 。
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且sinA+cos2$\frac{B+C}{2}$=1,D為BC上一點(diǎn),且$\overrightarrow{AD}=\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$.
(1)求sinA的值;
(2)若a=4$\sqrt{2}$,b=5,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題:
①“全等三角形的面積相等”的逆命題;
②“正角形的三個(gè)角均為60°”的否命題;
③“若x2+y2=0,則x=y=0”的逆否命題;
④若x≤-3,則x2+x-6≥0;
其中真命題的個(gè)數(shù)是3.

查看答案和解析>>

同步練習(xí)冊(cè)答案