已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為(
3
,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的交點A和B,且
OA
OB
>2(其中O為原點).求k的取值范圍.
分析:(1)由雙曲線的右焦點與右頂點易知其標(biāo)準(zhǔn)方程中的c、a,進(jìn)而求得b,則雙曲線標(biāo)準(zhǔn)方程即得;
(2)首先把直線方程與雙曲線方程聯(lián)立方程組,然后消y得x的方程,由于直線與雙曲線恒有兩個不同的交點,則關(guān)于x的方程必為一元二次方程且判別式大于零,由此求出k的一個取值范圍;再根據(jù)一元二次方程根與系數(shù)的關(guān)系用k的代數(shù)式表示出xA+xB,xAxB,進(jìn)而把條件
OA
OB
>2
轉(zhuǎn)化為k的不等式,又求出k的一個取值范圍,最后求k的交集即可.
解答:解:(1)設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1
(a>0,b>0).
由已知得a=
3
,c=2,再由a2+b2=22,得b2=1

故雙曲線C的方程為
x2
3
-y2=1

(2)將y=kx+
2
代入
x2
3
-y2=1得
(1-3k2)x2-6
2
kx-9=0

由直線l與雙曲線交于不同的兩點得
1-3k2≠0
△=(6
2
k)2+36(1-3k2)=36(1-k2)>0.

k2
1
3
k2<1
.①
設(shè)A(xA,yA),B(xB,yB),
xA+xB=
6
2
k
1-3k2
xAxB=
-9
1-3k2
,由
OA
OB
>2得x AxB+yAyB>2
,
xAxB+yAyB=xAxB+(kxA+
2
)(kxB+
2
)=(k2+1)xAxB+
2
k(xA+xB)+2
=(k2+1)
-9
1-3k2
+
2
k
6
2
k
1-3k2
+2=
3k2+7
3k2-1

于是
3k2+7
3k2-1
>2,即
-3k2+9
3k2-1
>0,解此不等式得
1
3
k2<3
.②
由①、②得
1
3
k2<1

故k的取值范圍為(-1,-
3
3
)∪(
3
3
,1)
點評:本題考查雙曲線的標(biāo)準(zhǔn)方程與性質(zhì)以及直線和圓錐曲線的位置關(guān)系,綜合性強(qiáng),字母運(yùn)算能力是一大考驗.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中沖刺文)(分)已知雙曲線C的中心在原點,焦點在x軸上,右準(zhǔn)線為一條漸近線的方程是過雙曲線C的右焦點F2的一條弦交雙曲線右支于P、Q兩點,R是弦PQ的中點.

   (1)求雙曲線C的方程;

   (2)若A、B分別是雙曲C上兩條漸近線上的動點,且2|AB|=|F1F2|,求線段AB的中點M的跡方程,并說明該軌跡是什么曲線。

   (3)若在雙曲線右準(zhǔn)線L的左側(cè)能作出直線m:x=a,使點R在直線m上的射影S滿足,當(dāng)點P在曲線C上運(yùn)動時,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案