設(shè)函數(shù)
(I)求函數(shù)的單調(diào)區(qū)間;
(II)若不等式()在上恒成立,求的最大值.
(1)函數(shù)的增區(qū)間為,減區(qū)間為;(2)的最大值為3.
解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用導(dǎo)數(shù)研究函數(shù)的極值與最值、恒成立問題等數(shù)學(xué)知識,考查綜合分析問題解決問題的能力和計(jì)算能力,考查函數(shù)思想和分類討論思想.第一問,首先求函數(shù)的定義域,利用為增函數(shù),為減函數(shù),通過求導(dǎo),解不等式求出單調(diào)區(qū)間,注意單調(diào)區(qū)間必須在定義域內(nèi);第二問,因?yàn)椴坏仁胶愠闪ⅲ赞D(zhuǎn)化表達(dá)式,此時(shí)就轉(zhuǎn)化成了求函數(shù)的最小值問題;法二,將恒成立問題轉(zhuǎn)化為,即轉(zhuǎn)化為求函數(shù)的最小值,通過分類討論思想求函數(shù)的最小值,只需最小值大于0即可.
試題解析:(I)函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/e1/c/h4c0l.png" style="vertical-align:middle;" />.
由,得;由,得
所以函數(shù)的增區(qū)間為,減區(qū)間為. 4分
(II)(解法一)由已知在上恒成立.
則,令
則,設(shè)
則,所以函數(shù)在單調(diào)遞增. 6分
而
由零點(diǎn)存在定理,存在,使得,即,
又函數(shù)在單調(diào)遞增,
所以當(dāng)時(shí),;當(dāng)時(shí),.
從而當(dāng)時(shí),;當(dāng)時(shí),
所以在上的最小值
因此在上恒成立等價(jià)于 10分
由,知,所以的最大值為3. 12分
解法二:由題意
在上恒成立,
設(shè)
6分
1.當(dāng)時(shí),則,∴單增,,即恒成立. 8分
2.當(dāng)時(shí),則在單減,單增,
∴最小值為,只需即可,即, 10分
設(shè)
,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且對任意實(shí)數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知冪函數(shù)為偶函數(shù).
(1)求的解析式;
(2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫出的圖象;
(2)寫出的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com