已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(1)證明:對(duì)任意x>-1,有f(x)≤g(x)成立;
(2)若不等式(1+
1
n
)n+a≤e
對(duì)任意的n∈N*都成立(其中e為自然對(duì)數(shù)的底數(shù)),求a的最大值.
分析:(1)構(gòu)造函數(shù)h(x)=f(x)-g(x)=ln2(1+x)-
x2
1+x
,求出函數(shù)的最大值為0,即可證明對(duì)任意x>-1,有f(x)≤g(x)成立;
(2)不等式(1+
1
n
)
n+a
≤e
等價(jià)于不等式(n+a)ln(1+
1
n
)≤1,借用(1)結(jié)論,構(gòu)造新函數(shù),確定函數(shù)的單調(diào)性,從而可求函數(shù)的最值,即可求出a最大值.
解答:(1)證明:構(gòu)造函數(shù)h(x)=f(x)-g(x)=ln2(1+x)-
x2
1+x
,函數(shù)h(x)的定義域是(-1,+∞),
h′(x)=
2(1+x)ln(1+x)-x2-2x 
(1+x)2

設(shè)F(x)=2(1+x)ln(1+x)-x2-2x,則F'(x)=2ln(1+x)-2x.
令G(x)=2ln(1+x)-2x,則G′(x)=-
2x
1+x

當(dāng)-1<x<0時(shí),G'(x)>0,G(x)在(-1,0)上為增函數(shù),
當(dāng)x>0時(shí),G'(x)<0,G(x)在(0,+∞)上為減函數(shù).
所以G(x)在x=0處取得極大值,而G(0)=0,所以F'(x)<0(x≠0),
∴函數(shù)F(x)在(-1,+∞)上為減函數(shù).
于是當(dāng)-1<x<0時(shí),F(xiàn)(x)>F(0)=0,當(dāng)x>0時(shí),F(xiàn)(x)<F(0)=0.
所以,當(dāng)-1<x<0時(shí),h'(x)>0,h(x)在(-1,0)上為增函數(shù).
當(dāng)x>0時(shí),h'(x)<0,h(x)在(0,+∞)上為減函數(shù).
故函數(shù)h(x)的單調(diào)遞增區(qū)間為(-1,0),單調(diào)遞減區(qū)間為(0,+∞).
∴h(x)在x=0處取得極大值,而h(0)=0
∴h(x)≤0,∴對(duì)任意x>-1,有f(x)≤g(x)成立;
(2)解:不等式(1+
1
n
)
n+a
≤e
等價(jià)于不等式(n+a)ln(1+
1
n
)≤1.
由1+
1
n
>1知,a≤
1
ln(1+
1
n
)
-n

設(shè)M(x)=
1
ln(1+x)
-
1
x
,x∈(0,1],則M′(x)=
(1+x)ln2(1+x)-x2
x2(1+x)ln2(1+x)

由(1)知,ln2(1+x)-
x2
1+x
≤0,即(1+x)ln2(1+x)-x2≤0.
所以M'(x)<0,x∈(0,1],于是M(x)在(0,1]上為減函數(shù).
故函數(shù)M(x)在(0,1]上的最小值為M(1)=
1
ln2
-1.
所以a的最大值為
1
ln2
-1.
點(diǎn)評(píng):本題以函數(shù)為載體,考查不等式的證明,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性與極值,解題時(shí)構(gòu)造新函數(shù),確定函數(shù)的單調(diào)性與極值時(shí)關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案