設(shè)動(dòng)圓C與兩圓數(shù)學(xué)公式數(shù)學(xué)公式中的一個(gè)內(nèi)切,另一個(gè)外切.則動(dòng)圓C的圓心M軌跡L的方程是________.


分析:由題意直接利用已知列出關(guān)系式,結(jié)合圓錐曲線的定義,即可求出圓心M的軌跡方程.
解答:根據(jù)題意,有,或
∴|MC1|-|MC2|=4<|C1C2|=2,或|MC2|-|MC1|=4<|C1C2|=2
所以,圓心M的軌跡是以C1、C2為焦點(diǎn)的雙曲線,
故M的軌跡方程為:
故答案為:
點(diǎn)評(píng):本題考查曲線軌跡方程的求法,圓的幾何性質(zhì)的應(yīng)用和圓錐曲線的定義是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南師大附中高三第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知?jiǎng)訄AP與兩圓(x+2)2+y2=2,(x-2)2+y2=2中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求動(dòng)圓圓心P的軌跡E的方程;
(2)過(guò)(2,0)作直線l交曲線E于A、B兩點(diǎn),使得,求直線l的方程;
(3)若從動(dòng)點(diǎn)P向圓C:x2+(y-4)2=1作兩條切線,切點(diǎn)為A、B,設(shè)|PC|=t,試用t表示,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省邵陽(yáng)市洞口一中高二(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)動(dòng)圓C與兩圓中的一個(gè)內(nèi)切,另一個(gè)外切.則動(dòng)圓C的圓心M軌跡L的方程是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖南師大附中高三第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知?jiǎng)訄AP與兩圓(x+2)2+y2=2,(x-2)2+y2=2中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求動(dòng)圓圓心P的軌跡E的方程;
(2)過(guò)(2,0)作直線l交曲線E于A、B兩點(diǎn),使得,求直線l的方程;
(3)若從動(dòng)點(diǎn)P向圓C:x2+(y-4)2=1作兩條切線,切點(diǎn)為A、B,設(shè)|PC|=t,試用t表示,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省邵陽(yáng)市洞口一中高二(上)8月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)動(dòng)圓C與兩圓,中的一個(gè)內(nèi)切,另一個(gè)外切.則動(dòng)圓C的圓心M軌跡L的方程是   

查看答案和解析>>

同步練習(xí)冊(cè)答案