在菱形ABCD中,下列等式成立的是

[  ]
A.

B.

C.

D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點.
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB;
(3)在(2)的條件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•豐臺區(qū)二模)如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點.
(Ⅰ)若Q是PA的中點,求證:PC∥平面BDQ;
(Ⅱ)若PB=PD,求證:BD⊥CQ;
(Ⅲ)在(Ⅱ)的條件下,若PA=PC,PB=3,∠ABC=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點,PA=PD=AD=2
(1)點M在線段PC上,PM=tPC,試確定t的值,使PA∥平面MQB;
(2)在(1)的條件下,若平面PAD⊥平面ABCD,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是邊長為2的菱形,∠BAD=
π
3
,PD=2k (k>0),E
為AB中點.
(Ⅰ)求證:ED⊥平面PDC;
(Ⅱ)當二面角P-EC-D的大小為
π
6
時,求k的值;
(Ⅲ)在(Ⅱ)的條件下,求直線EC與平面PAB所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,PD⊥面ABCD,四邊形ABCD是菱形,AC=6,BD=6
3
,E是PB上任意一點
(1)求證:AC⊥DE;
(2)當△AEC面積的最小值是9時,求PD的長
(3)在(2)的條件下,在線段BC上是否存在點G,使EG與面PAB所成角的正切值為2?若存在,求出BG的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案