【題目】在一次抽樣調(diào)查中測(cè)得樣本的6組數(shù)據(jù),得到一個(gè)變量關(guān)于的回歸方程模型,其對(duì)應(yīng)的數(shù)值如下表:

2

3

4

5

6

7

(1)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明之間存在線性相關(guān)關(guān)系(當(dāng)時(shí),說(shuō)明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

,,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,.

【答案】(1) 之間存在線性相關(guān)關(guān)系;(2)0.38 ,.

【解析】試題分析:

(1)由題意求得;,說(shuō)明之間存在線性相關(guān)關(guān)系;

(2)結(jié)合所給數(shù)據(jù)可求得回歸方程為,.據(jù)此預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的值為.

試題解析:

(1)由題意,計(jì)算

,

,,.

;

,說(shuō)明之間存在線性相關(guān)關(guān)系;

(2).

.

的線性回歸方程為.

代入回歸方程得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】媒體為調(diào)查喜歡娛樂(lè)節(jié)目是否與性格外向有關(guān),隨機(jī)抽取了400名性格外向的和400名性格內(nèi)向的居民,抽查結(jié)果用等高條形圖表示如下圖:

(1)填寫(xiě)完整如下列聯(lián)表;

(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜歡娛樂(lè)節(jié)目與性格外向有關(guān)?

參考數(shù)據(jù)及公式:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),( ).

(Ⅰ)若有最值,求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)時(shí),若存在、),使得曲線處的切線互相平行,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, )展開(kāi)式的前三項(xiàng)的二項(xiàng)式系數(shù)之和為16,所有項(xiàng)的系數(shù)之和為1.

(1)求的值;

(2)展開(kāi)式中是否存在常數(shù)項(xiàng)?若有,求出常數(shù)項(xiàng);若沒(méi)有,請(qǐng)說(shuō)明理由;

(3)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方形 , ,以的中點(diǎn)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.

(1)求以為焦點(diǎn),且過(guò)兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;

(2)在(1)的條件下,過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),設(shè),點(diǎn)坐標(biāo)為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了弘揚(yáng)民族文化,某校舉行了“我愛(ài)國(guó)學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(jī)(得分均為整數(shù),滿足100分)進(jìn)行統(tǒng)計(jì)制表,其中成績(jī)不低于80分的考生被評(píng)為優(yōu)秀生,請(qǐng)根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計(jì)概率,回答下列問(wèn)題.

分組

頻數(shù)

頻率

5

0.05

0.20

35

25

0.25

15

0.15

合計(jì)

100

1.00

(1)求的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率;

(2)按頻率分布表中的成績(jī)分組,采用分層抽樣抽取20人參加學(xué)校的“我愛(ài)國(guó)學(xué)”宣傳活動(dòng),求其中優(yōu)秀生的人數(shù);

(3)在第(2)問(wèn)抽取的優(yōu)秀生中指派2名學(xué)生擔(dān)任負(fù)責(zé)人,求至少一人的成績(jī)?cè)?/span>的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),若存在實(shí)數(shù)使得不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線θ為參數(shù)),將上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的2倍后得到曲線,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線

1)試寫(xiě)出曲線的極坐標(biāo)方程與曲線的參數(shù)方程;

2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最小,并求此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程.

已知曲線在直角坐標(biāo)系下的參數(shù)方程為為參數(shù)).以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)求曲線的極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線與曲線交于點(diǎn),與直線交于,求線段的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案